Ток в газах и контактные явления

Автор: Пользователь скрыл имя, 23 Января 2012 в 17:19, реферат

Описание работы

Если соединить проволокой два проводника, между которыми была создана разность потенциалов, то потенциалы будут выравниваться, при этом заряды на проводниках перераспределяются, а в соединительной проволоке происходит направленное перемещение зарядов, называемые током. Ток под действием приложений разности потенциалов возникает в любой среде, где имеются свободные электроны.

Содержание

Введение……………………………………………………………………………………………3
Электропроводность газов………………………………………………………………………...4
Несамостоятельный газовый разряд………………………………………………………………5
Самостоятельный газовый разряд…………………………………………………………………8
Тлеющий разряд…………………………………………………………………………………….9
Самостоятельный разряд………………………………………………………………………......10

Работа содержит 1 файл

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОСИЙСКОЙ ФЕДЕРАЦИИ.doc

— 377.00 Кб (Скачать)

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ РОСИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего  профессионального образования

«ТЮМЕНСКИЙ  ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» 
 
 

РЕФЕРАТ 

Тема: «Ток в  газах и контактные явления» 
 
 
 

Выполнила:

 студент  БТП-10

Никитина  Дарья

Проверил:

Нерадовский Д.Ф

 
 
 
 
 
 
 

Тюмень, 2011 год. 
 

СОДЕРЖАНИЕ 
 
 
 

Введение……………………………………………………………………………………………3

Электропроводность  газов………………………………………………………………………...4

Несамостоятельный газовый разряд………………………………………………………………5

Самостоятельный газовый разряд…………………………………………………………………8

Тлеющий разряд…………………………………………………………………………………….9

Самостоятельный разряд………………………………………………………………………......10 
 
 
 
 
 
 
 
 
 
 

ВВЕДЕНИЕ

Если соединить  проволокой два проводника, между  которыми была создана разность потенциалов, то потенциалы будут выравниваться, при этом заряды на проводниках перераспределяются, а в соединительной проволоке происходит направленное перемещение зарядов, называемые током. Ток под действием приложений разности потенциалов возникает в любой среде, где имеются свободные электроны.

В зависимости  от вида и природы зарядоносителей  проводимость бывает электронной, ионной и дырочной.

Электронной проводимостью  обладают металлы. Существует такая  проводимость и в верхних слоях  атмосферы, где плотность вещества невелика, благодаря чему электроны могут свободно перемещаться, не соединяясь с положительно заряженными ионами.

Жидкие электроны  обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.

Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению  вакантного места с отсутствующей  связью. Такое “пустые” место с  отсутствующими электронами связи  получило название - дырка.            

 Возникновение  дырки в кристалле проводника  создаёт дополнительную возможность  для переноса заряда. Этот процесс,  сопровождающийся перемещением  электронов, получил название дырочной  проводимостью. 

Плазма, под которой  понимается газ, имеющий концентрацию зарядоносителей, намного превышающую незаряженных частиц, обладает электронной и ионной проводимостью.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1. Электропроводность  газов
 

ИОНИЗАЦИЯ ГАЗОВ

Вышеописанный опыт показывает, что в газах под  влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a -, b - и g -лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ионизация атома  требует затраты определенной энергии  – энергии ионизации. Для ионизации  атома (или молекулы) необходимо совершить  работу против сил взаимодействия между  вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации A i . Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения  действия ионизатора количество ионов в газе с течением времени уменьшается и, в конце концов,  ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они могут воссоединиться в нейтральный атом. Точно также при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Этот процесс заключается  в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны (об этом будет рассмотрено позднее).

Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы, движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.

Таким образом, электрический ток в газе представляет собой направленное движение положительных  ионов к катоду, а отрицательных  ионов и электронов к аноду. Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.

     Потенциал ионизации - разность электрических потенциалов, ускоряющая электрон до энергии, равной работе ионизации. Потенциал ионизации измеряется в вольтах и является индивидуальной характеристикой вещества. Различают:  
- первый потенциал ионизации, позволяющий оторвать один электрон от нейтрального невозбужденного атома;  
- второй потенциал ионизации, позволяющий оторвать два электрона;  
- третий потенциал ионизации, позволяющий оторвать два электрона и т.д.

      Потенциал ионизации 
 

     Ударная ионизация — физическое явление, заключающееся в ионизации атома при ударе о него электрона (или другой лёгкой частицы — например, позитрона или «дырки»). Явление может наблюдаться как в газах, так и в твёрдых телах (в частности, в полупроводниках).

Подвижность ионов и электронов,  

1) в газе и  низкотемпературной плазме отношение средней скорости u направленного (в результате действия электрического поля) движения электронов или ионов к напряжённости электрического поля Е: m = u/E. Зависимость u от Е в принципе даётся решением кинетического уравнения Больцмана. Однако не только решение, но даже точное написание этого уравнения связано со значительными трудностями, обусловленными разнообразием элементарных процессов, в которых участвуют ионы и электроны. Поэтому обычно П. и. и э. теоретически рассчитывают приближённо, вводя упрощающие допущения. Подвижность ионов (mи) и электронов (mэл) исследуют раздельно, т.к. элементарные процессы, определяющие движение тех и других, различны. Для электронов существенно, что вследствие малости их массы они при упругих столкновениях теряют лишь незначительную часть энергии. Поэтому даже в слабых полях появление у них направленного движения (накладывающегося на тепловое — хаотическое) приводит к тому, что их средняя энергия намного превышает энергию тяжёлых нейтральных атомов и молекул. Теоретически П. и. и э. впервые проанализировал в 1903 П. Ланжевен. Впоследствии были развиты более строгие и сложные теории, описывающие зависимость u от Е. Первым измерил mэл английский физик Дж. Таунсенд, изучая диффузию пучка электронов, движущихся в электрическом поле, и смещение этого пучка в магнитном поле. Наиболее точные данные о зависимости u от Е приведены на рис. 1. Приближённые значения mэл получают при измерении концентрации и подвижности электронов (а также Е) в положительном столбе электрического разряда в газе.  

  Подвижность ионов, движущихся в постороннем газе, удовлетворительно описывается теорией Ланжевена, согласно которой в одном и том же газе она зависит только от массы иона (рис. 2). Основной процесс, определяющий m ионов в их собственном газе, — перезарядка ионов. Пройдя длину свободного пробега перезарядки, ион обменивается зарядом с нейтральной частицей, а вновь возникший ион «стартует» с начальной скоростью, близкой к тепловой (т. н. «эстафетный» механизм движения ионов). В сильных полях при этом u » (Е/р)1/2, где р — давление газа, приведённое к 0°C. Развитие этой теории позволило учесть и собственное тепловое движение нейтральных атомов (молекул). В предельно слабых полях теория предсказывает, а эксперимент подтверждает линейную зависимость u ионов от Е. 

  П. и. и э. связана с коэффициентом диффузии D формулой Эйнштейна: D/m = kT/e, где Т — абсолютная температура заряженных частиц в предположении, что они подчиняются Максвелла распределению (в смеси разных заряженных и нейтральных частиц их средние энергии и, следовательно, температуры могут быть различны — свойство «неизотермичности» такой смеси); k — Больцмана постоянная; е — заряд электрона. 

2) Подвижность ионов в растворах U = Fu, где F — Фарадея число, u — скорость иона в см/сек при напряжённости электрического поля в 1 в/см. Величина U зависит от природы иона, а также от температуры, диэлектрической проницаемости, вязкости и концентрации раствора.

Зависимость подвижности ионов   от их массы Мi

Ома закон

Ома закон, устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника:

RI = U. (1)

Коэффициент пропорциональности R, зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением, данного участка проводника. О. з. открыт в 1826 немецким физиком Г. С. Омом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определённом интервале напряжений считать её линейной и применять О. з.; для металлов и их сплавов этот интервал практически неограничен.

О. з. в форме (1) справедлив для участков цепи, не содержащих источников электродвижущей  силы (эдс). При наличии таких источников (аккумуляторов, термопар, динамомашин  и пр.) О. з. имеет вид:

RI = U + E, (2)

где Е — эдс всех источников, включенных в рассматриваемый участок цепи. Для замкнутой цепи О. з. принимает следующую форму:

RпI = E, (3)

где Rn = R + RI — полное сопротивление всей цепи, равное сумме внешнего сопротивления цепи R и внутреннего сопротивления Ri источника эдс. Обобщением О. з. на случай разветвленных цепей являются Кирхгофа правила.

О. з. можно записать также в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное электрическое поле напряжённости Е, создаваемое в проводниках микроскопическими зарядами (электронами и ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т.к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках эдс и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряжённостью Естр, называется сторонним. Полная напряжённость поля, действующего внутри проводника на заряды, в общем случае равна Е + Естр. Соответственно дифференциальный О. з. имеет вид:

rj= E + Естр, или = s(E + Естр), (4)

где r — удельное сопротивление материала проводника, а s=1/r — удельная электропроводность.

О. з. в комплексной  форме справедлив также для синусоидальных квазистационарных токов:

ZI = E, (5)

где Z — полное комплексное сопротивление, равное Z = R+ iX, R — активное, а iX — реактивное сопротивления цепи. При наличии индуктивности L и ёмкости С в цепи квазистационарного тока частоты wХ = wL — 1/w С.

Информация о работе Ток в газах и контактные явления