Автор: Пользователь скрыл имя, 27 Сентября 2011 в 18:02, реферат
Тепловидение можно назвать универсальным способом получения различной информации об окружающем нас мире. Как известно, тепловое излучение имеет любое тело, температура которого отлична от абсолютного нуля. Кроме того, подавляющее большинство процессов преобразования энергии (а к ним относятся все известные процессы) протекает с выделением или поглощением тепла. Так как средняя температура на Земле не высока, большинство процессов проходят с малым удельным выделением тепла и при небольших температурах.
Тепловидение, как область применения законов теплового излучения ст. 3
Основные понятия и определения теории излучения. Закон Кирхгофа ст. 4
Классические законы теплового излучения ст. 6
Понятие о квантах. Формула Планка и вывод из нее классических законов как частных случаев ст. 8
Устройство тепловизоров ст. 10
Области применения методов тепловидения ст. 13
Применение тепловидения в медицине ст. 15
Некоторые применения тепловизионных устройств в промышленности ст. 17
ω³ =(kТx)³/ћ³
При подставлении получаем: R =
Так как интеграл
– это предел суммы (т.е. число), а
Аk4/ћ4 - константа, то R~Т4,
или R = σТ4 – закон который Стефан
и Больцман нашли экспериментально в 1884
г. (Из таблицы определенных интегралов
известно значение интеграла в последнем
выражении. Оно равно π4/15≈6,5).
2. При низких частотах
и высоких температурах
Обозначим ћω/kТ через x.
ех при разложении в ряд дает:
ех = 1+x+x²/2+…≈1+x
Тогда ех -1 = 1+x-1 = х (с точностью до величин первого порядка)
Подставим в формулу Планка с раскрытием х:
– формула Рэлея-Джинса.
3. При высоких
частотах и низких
Так как ћω/kТ » 1, то ећω/kТ –1 ≈ ећω/kТ .
Пусть ћ/4π²с²=А, тогда
f (ω,Т) = А·ω³·е-ћω/kТ = ω³·F(ω/Т) – закон Вина.
Таким образом, формула
Планка дает исчерпывающее описание
равновесного теплового излучения.
5. Устройство тепловизоров
|
Инфракрасное
но носить с собой сосуды дюара
очень неудобно. Другой вид – посредством
элементов Пельтье (полупроводники,
дающие перепад температур (тепловой насос)
при пропускании через них тока). Есть
еще один вид "неохлаждаемых тепловизоров",
работающих по другому принципу,
но характеристики их пока заметно хуже,
зато они намного мобильнее.
Таким образом, на экране тепловизора мы видим значения мощности инфракрасного излучения в каждой точке поля зрения тепловизора, отображенные согласно заданной цветовой палитре (черно-белой или цветной).
Высокая чувствительность
тепловизоров реализуется благодаря
наличию высокочувствительных
полупроводниковых приемников
излучения из антимонида индия
InSb, ртуть-кадмий-теллура Hg-Cd-Te и др.
Тепловидение
Перспективно использование тепловизоров для нахождения дефектов в различных установках. Естественно, когда в какой-нибудь установке или узле наблюдается повышение или понижение тепловыделения при каком-нибудь процессе в местах, где этого не должно быть, или тепловыделение (теплопоглощение) в подобных узлах сильно различается, то неполадку можно своевременно исправить. Иногда некоторые дефекты можно заметить только с помощью тепловизора. Например, на мостах и тяжелых опорных конструкциях при старении металла или нерасчетных деформациях начинает выделяться больше энергии, чем должно. Появляется возможность диагностировать состояние объекта, не нарушая его целостности, хотя могут возникнуть трудности, связанные с не очень высокой точностью, вызванной промежуточными конструкциями.
Таким образом, тепловизор можно использовать как оперативный и, пожалуй, единственный контроллер состояния безопасности многих объектов и предотвращать катастрофы. Проверка функционирования дымоходов, вентиляции, процессов тепло- и массообмена, атмосферных явлений становиться на порядки удобнее, проще, информативнее.
Широкое применение тепловидение нашло в медицине.
В современной медицине тепловизионное обследование представляет мощный диагностический метод, позволяющий выявлять такие патологии, которые плохо поддаются контролю другими способами. Тепловизионное обследование служит для диагностики на ранних стадиях (до рентгенологических проявлений, а в некоторых случаях задолго до появления жалоб больного) следующих заболеваний: воспаление и опухоли молочных желез, органов гинекологической сферы, кожи, лимфоузлов, ЛОР-заболевания, поражения нервов и сосудов конечностей, варикозное расширение вен; воспалительные заболевания желудочно-кишечного тракта, печени, почек; остеохондроз и опухоли позвоночника. Как абсолютно безвредный прибор тепловизор эффективно применяется в акушерстве и педиатрии.
У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием тепловизионной диагностики заболеваний. По участкам тела с аномально высокой или низкой температурой можно распознать симптомы более 150 болезней на самых ранних стадиях их возникновения.
Термография — метод функциональной диагностики, основанный на регистрации инфракрасного излучения человеческого тела, пропорционального его температуре. Распределение и интенсивность теплового излучения в норме определяются особенностью физиологических процессов, происходящих в организме, в частности как в поверхностных, так и в глубоких органах. Различные патологические состояния характеризуются термоасимметрией и наличием температурного градиента между зоной повышенного или пониженного излучения и симметричным участком тела, что отражается на термографической картине. Этот факт имеет немаловажное диагностическое и прогностическое значение, о чем свидетельствуют многочисленные клинические исследования.
Выделяют два
1.Контактная холестерическая термография.
2.Телетермография.
Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора.
Контактная
После рассмотрения различных методов тепловидения встает вопрос о способах интерпретации термографического изображения. Существуют визуальный и количественный способы оценки тепловизионной картины.
Визуальная (качественная) оценка термографии позволяет определить расположение, размеры, форму и структуру очагов повышенного излучения, а также ориентировочно оценивать величину инфракрасной радиации. Однако при визуальной оценке невозможно точное измерение температуры. Кроме того, сам подъем кажущейся температуры в термографе оказывается зависимым от скорости развертки и величины поля. Затруднения для клинической оценки результатов термографии заключаются в том, что подъем температуры на небольшом по площади участке оказывается малозаметным. В результате небольшой по размерам патологический очаг может не обнаруживаться.
Радиометрический
подход весьма перспективен. Он предполагает
использование самой современной техники
и может найти применение для проведения
массового профилактического обследования,
получения количественной информации
о патологических процессах в исследуемых
участках, а также для оценки эффективности
термографии.
8. Некоторые применения тепловизионных устройств в промышленности