Шпаргалка по "Физике"

Автор: r**********@mail.ru, 25 Ноября 2011 в 16:55, шпаргалка

Описание работы

Работа содержит ответы на вопросы для зачета по дисциплине "Физика".

Работа содержит 1 файл

Теоретическая механика шпаргалка.doc

— 95.00 Кб (Скачать)
  1. Теорема о движении центра масс механической системы.

Рассмотрим движущуюся систему мат. точек М1, М2, Мi, Mn, находящихся под действием внешних и внутренних сил (рис). Положение центра масс системы С определяется равенством

rc = ∑miri/m. Уравнения движения точек этой системы имеют вид

mi d2ri/dt2 = PiE + PiJ ; (i = 1, 2, …, n), суммируем эти уравнения:

∑mi d2ri/dt2 =∑ PiE + ∑ PiJ (а). Преобразуем левую часть равенства, учитывая (rc = ∑miri/m) получаем: ∑mi d2ri/dt2 = d2/dt2 * ∑mi ri = d2/dt2 * (mrc) = md2rc/dt2. Геометрическая сумма внутренних сил равна 0. Уравнение (а) приобретает вид: md2rc/dt2 = ∑PiE = R или

maC = ∑ PiE = RE   (в). т.е. произведение массы системы на ускорение её центра масс = геометрической сумме всех действующих на систему внешних сил или главному вектору этих сил. Уравнение (в) выражает теорему о движении центра масс системы, которая формулируется следующим образом: Центр масс мех. сис. движется как мат. точ. массой, равной массе всей системы, к которой приложены все внешние силы действующие на систему.

Проецируя на оси  x, y, z – mxC = ∑ XiE = XE 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Теорема о моментах  инерции твёрдого  тела относительно  параллельных осей.

Момент  инерции твердого тела относительно некоторой  оси равен моменту  инерции тела относительно параллельной оси проходящей через его центр масс, сложенному с произведением массы тела на квадрат расстояния между осями. Допустим, что задана ось Oz1. Для доказательства теоремы проведём через центр масс тела С три взаимно перпендикулярные оси, из которых ось Сz параллельна заданной оси Oz1, а ось Су лежит в плоскости параллельных осей Сz и Oz1 (рис а, в). Обозначим d – расстояние между осями Cz и Oz1. для вычисления моментов инерции тела относительно осей Cz и Oz1 опустим из каждой точки Mi рассматриваемого тела перпендикуляры ri и h на оси Cz и Oz1. Выразим длины этих перпендикуляров через координаты этих точек:

ri2 = xi2 + yi2, hi2 = xi2 + (yi – d)2 = xi2 + yi2 + d2 – 2yid = ri2 + d2 – 2yid. (a)

Определим моменты  инерции тела относительно осей Cz и Oz1:

JCz = ∑ miri2, Jz1 = ∑ mihi2.

Применив зависимость (а): Jz1 = ∑ miri2 + ∑ mid2 – 2∑miyid. (в)

Здесь ∑ mi = m. – масса тела. Из формулы yc = ∑ miyi/m, получим:

∑ miyi = myc, так как yc = 0, то ∑miyi = 0. Подставляя это значение в равенство (в), получаем зависимость, установленную теоремой:

Jz1 = Jcz + md2 . (г). Формула (г) показывает, что из совокупности паралельных осей ось, проходящая через центр масс тела, характеризуется наименьшим моментом инерции. Полярный момент тв. тела относительно центра масс: Jc = ½ * (Jcx + Jcy + Jcz). Отсюда следут, что ценр масс тела явл. полюсом, относительно которго полярный момент инерции тела имеет наименьшее возможное значение.

Воспользуемся формулой (г) для установления зависимости между  радиусами инерции  твёрдого тела icz и iz1 относительно осей Cz и Oz1.

Jz1 = miz12, Jcz = micz2, тогда miz12 = mcz2 + md2, откуда iz12 = icz2 + d2. 
 
 
 

3. Теорема  об  изменении количества  движения механической  системы.

Изменение количества движения мех. сис. за некотрый промежуток времени равно геометрической сумме импульсов внешних сил приложенных к системе за тотже промежуток времени.

K = ∑ mкυк; K = ∑ mкdrк/dt = d/dt * ∑mкrк = d/dt * mrc = mdrc/dt = mυc => K = mυc. Найдём призводную: dK/dt = d(mυc)/dt = mdυc/dt = mac

Но из теоремы  о движении ценра масс мех. сис. mac = RE = ∑ PкE; dK/dt = ∑ PкE. Проинтегрируем это выражение: ∫к1к2 dK = ∫t1t2∑PкEdt;

k2-k1=∑SкEч.т.д. 
 
 
 

6. Теорема о работе  силы.

Работа  постоянной по модулю и направлению силы на результирующем перемещении  равна алгебраической сумме работ этой силы на составляющих перемещениях.

Предположим, что  точка приложения постоянной по модулю и напрвлению силы Р получает совокупность последовательных перемещений u1, u2, …, un (рис выполнен для n = 3). Результирующее перемещение точки М: u = u1 + u2 +…+un. Работа силы Р на этом перемещении определяется по формуле: A = Pu = P(u1 + u2 +…+un). полученная сумма представляет собой сумму работ силы на составляющих перемещениях. Т.о., A = A1 + A2+…+ An.

На основании  этой теоремы при вычислении работы постоянной силы на криволинейном перемещении криволинейное перемещение можно заменить прямолинейным. При u = 0, т.е. в случае замкнутого контура, работа постоянной силы = 0.

            u2           M2

  M1

                             u3

 u1             P                  

                                M3

              u 
 
 

8. Теорема об изменении  кинетической энергии  механической системы.

Установим зависимость  между изменением кинет. энергии  мех. сис. и работой приложенных  к её точкам сил. Для этого разделим силы .действующие на точки М1, М2, М3, …, Мn, на внешние силы P1E, Р2Е, …, РiE, …, РnЕ и внутрение силы P1J, P2J, PiJ, …, PnJ. Применим к движению каждой точки Мi теорему об изменении кинетической энергии. Предположим, что при перемещении механической системы из первого положения во второе каждая точка Мi перемещается из Мi(1) в Mi(2), причём скорость её изменяется от υi(1)  до vi(2) (рис.).

Тогда по уравнению  mυ22/2 – mυ12/2 = ∑ Ai для каждой материальной точки

(miυi2 (2) / 2) – (miυi2 (2) / 2) = AiE + AiJ , (i = 1, 2, …, n),

где AiE  - работа силы РiE и Ai - работа силы PiJ на перемещении Мi(1) Mi(2).  Просумируем левые и правые части составленных n равенства:  (∑(miυ2i / 2))2 – (∑(miυi2 / 2))1 = ∑AiE + ∑AiJ.

Согласно T = ∑Ti, (∑(miυi2 / 2)) = T1 – кинетическая энергия системы в первом её положении; (∑(miυi2 / 2))2 = T2 – кинетическая энергия системы во втором положении. Таким образом,

T2 - T1 = ∑AiE + ∑AiJ. (a)

Уравнение (a) выражает теорему об изменении кинетической энергии механической системы: изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутрених сил, действующих на материальные точки системы на этом перемещение.

Cумма работ внутрених сил твёрдого тела на любом перемещении равна нулю, т.е. ∑AiJ = 0.

Для твёрдого тела уравнение (a) принимает вид

T2 - T1 = ∑AiE,                                                                                             

т.е. изменение  кинетической энергии твёрдого тела на некотором перемещении равно сумме работ внешних сил, действующих на тело на этом перемещении.

 

                                              υi(2)

 

                        Mi(2)

                   Mi

        υi(1)                                                     PiJ 

                                  PiE 

   Mi(1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Определение динамических  реакции при вращении  тв. тела вокруг  неподвижной оси.

Рассмотрим тв. тело под действием приложенных  к нему внешних сил Р1Е, Р2Е,…, РnE. Предположим, что в рассматриваемый момент тело имеет угловую скорость ω и угловое ускорение ε. Чтобы воспользоваться принципом Даламбера, приложим к каждой точке тела Мк силу инерции Фк. При неравномерном вращении эта сила состоит из Фкω – вращ. и Фкε – центроб. состояния силы инерции. Применим принцип освобождения от связей, заменим действие на тело подпятника А и подшипника В реакции. На основании принципа Даламбера все силы должны удовлетворять уравнению:

PE + RA + RB + ФA = 0,

MAE + MARA + MARB + MAФA = 0

Или спроецируем  на оси координат: получим новую  систему линейных уравнений:

∑ xкE + xA + xB + ∑ Pкx = 0

∑ yкE + yA + yB + ∑ Фкy = 0

∑ zкE + zA = 0

∑ MкxE – yBh + ∑ MФкx = 0

∑ MкyE + xBh + ∑ MФкy = 0

∑ MкzE + ∑ MкФ = 0 
 
 
 
 
 
 
 
 
 
 
 

10. Вывод общего уравнения динамики.

Если система  получит возможное помещение  при котором каждая точка имеет  возможное перемещение δSк, то сумма работ этих сил на перемещении δSк должна быть равна 0.

Pk δSк cos(Pk, δSк) + Rk δSк cos(Rk, δSк) + Фк δSк cos(Фк, δSк) = 0,

(k = 1, 2, …, n). Просуммируем все n уравнения:

∑ Pk δSк cos(Pk, δSк) + ∑ Rk δSк cos(Rk, δSк) + ∑ Фк δSк cos(Фк, δSк) = 0

Положим, что  связи в рассматриваемой мех. сис. двухстороннеидеальные тогда  ∑ работ рекции связи = 0, тогда

∑ Pk δSк cos(Pk, δSк) + ∑ Фк δSк cos(Фк, δSк) =0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11. Вывод уравнения  Лагранжа 2 рода.

Общее уравнение  динамики сис. мат. точек в обобщённых координатах имеет вид: δq1 (δ/ δt *( δT/ δq1) – δT/ δq1  -Q1) + δq2(δ/ δt  - δT/ δq2 – δT/ δq2 – Q2) + … + δqS(δ/ δt  - δT/ δqS – δT/ δqS - QS) = 0

Где  q1, q2,…, qS – обобщённые координаты, q1, q2,…, qS -  обобщённые скорости, δq1, δq2,…, δqS - обобщённые возможные перемещения системы явл. вариациями соотвств. обобщ. координат,

Q1, Q2,…, QS - обобщ. силы системы,  Т – кин. энергия системы. Т.к. δq1, δq2,…, δqS в случае системы, подчиненной голомным связями, явл. независимыми обобщ. возможн. перемещ., то общ. ур–е динамики удовлетворяет лишь при условии, что коэф., стоящие при возможных перемещениях = 0, т.е.

δ/ δt *( δT/ δq1) – δT/ δq1 = Q1 } – уравнение Лагранжа 2 рода.

Информация о работе Шпаргалка по "Физике"