Автор: Пользователь скрыл имя, 28 Октября 2011 в 11:48, курсовая работа
Физические представления в Древнем Китае появились также на основе различного рода технической деятельности, в процессе которой вырабатывались разнообразные технологические рецепты. Естественно, что прежде всего вырабатывались механические представления. Так, китайцы имели представления о силе ( то, что заставляет двигаться), противодействии, (то, что останавливает движение), рычаге, блоке, сравнении весов (сопоставлении с эталоном). В области оптики китайцы имели представление об образовании обратного изображения в "camera obscura". Уже в шестом веке до н.э. они знали явления магнетизма - притяжения железа магнитом, на основе чего был создан компас.
1.Введения
2.Радиоактивность
3.Ядерные реакторы
4.Инженерные аспекты термоядерного реактора
5.Ядерная реакция. Ядерная енергетика.
6.Гамма-излучения
7.Атомный реактор
8.Принципы построения атомной енергетики
9.Ядерный синтез завтра
10 .Выивод
11.Список литератури
Чтобы исключить джоулевы потери, магнитная система, как указывалось ранее, будет полностью сверхпроводящей. Для обмоток магнитной системы предполагается использовать сплавы ниобий — титан и ниобий — олово.
Создание магнитной системы реактора на сверхпроводнике с В 12 Тл и плотностью тока около 2 кА — одна из основных инженерных проблем разработки термоядерного реактора, которую предстоит решить в ближайшее время.
Криогенная система включает в себя криостат магнитной системы и криопанели в инжекторах дополнительного нагрева плазмы. Криостат имеет вид вакуумной камеры, в которой заключены все охлаждаемые конструкции. Каждая катушка магнитной системы помещена в жидкий гелий. Его пары охлаждают специальные экраны, расположенные внутри криостата для уменьшения тепловых потоков с поверхностей, находящихся при температуре жидкого гелия. В криогенной системе предусмотрены два контура охлаждения, в одном из которых циркулирует жидкий гелий, обеспечивающий требуемую для нормальной работы сверхпроводящих катушек температуру около 4 К, а в другом — жидкий азот, температура которого составляет 80 - 95 К. Этот контур служит для охлаждения перегородок, разделяющих части с гелиевой и комнатной температурами.
Криопанели инжекторов охлаждаются жидким гелием и предназначены для поглощения газов, что позволяет поддерживать достаточную скорость откачки при относительно высоком разрежении.
Вакуумная система обеспечивает откачку гелия, водорода и примесей из полости дивертора или из окружающего плазму пространства в процессе работы реактора, а также из рабочей камеры в паузах между импульсами. Чтобы откачиваемый тритий не выбрасывался в окружающую среду, в системе необходимо предусмотреть замкнутый контур с минимальным количеством циркулирующего трития. Откачивать газ можно турбомолекулярными насосами, производительность которых должна несколько превышать достигнутую на сегодняшний день. Длительность паузы для подготовки рабочей камеры к следующему импульсу при этом не превышает 30 с.
Система
энергопитания существенно
Бланкет реактора расположен за первой стенкой рабочей камеры и предназначен для захвата нейтронов, образующихся в DT-реакции, воспроизводства "сгоревшего" трития и превращения энергии нейтронов в тепловую энергию. В гибридном термоядерном реакторе бланкет служит также для получения делящихся веществ. Бланкет — это, по существу, то новое, что отличает термоядерный реактор от обычной термоядерной установки. Опыта по конструированию и эксплуатации бланкета пока нет, поэтому потребуются инженерно-конструкторские разработки литиевого и уранового бланкетов.
Тритиевый контур состоит из нескольких независимых узлов, обеспечивающих регенерацию откачиваемого из рабочей камеры газа, его хранение и подачу для подпитки плазмы, извлечение трития из бланкета и возврат его в систему питания, а также очистку от него отработанных газов и воздуха.
Защита реактора делится на радиационную и биологическую. Радиационная защита ослабляет поток нейтронов и снижает энерговыделение в сверхпроводящих катушках. Для нормальной работы магнитной системы при минимальных энергозатратах необходимо ослабить нейтронный поток в 10s—106 раз. Радиационная защита находится между бланкетом и катушками тороидального поля и закрывает всю поверхность рабочей камеры, за исключением каналов дивертора и вводов инжекторов. В зависимости от состава толщина защиты составляет 80- 130см.
Биологическая защита совпадает со стенами реакторного зала и сделана из бетона толщиной 200 — 250 см. Она предохраняет окружающее пространство от излучения.
Системы дополнительного нагрева плазмы и подпитки ее топливом занимают значительное пространство вокруг реактора. Если нагрев плазмы осуществляется пучками быстрых атомов, то радиационная защита должна окружать весь инжектор, что неудобно для расположения оборудования в реакторном зале и обслуживания реактора. Системы нагрева токами высокой частоты в этом смысле привлекательнее, так как их устройства ввода (антенны) более компактны, а генераторы могут быть установлены за пределами реакторного зала. Исследования на токамаках и разработка конструкции антенн позволят сделать окончательный выбор системы нагрева плазмы.
Система управления — неотъемлемая часть термоядерного реактора. Как и в любом реакторе, из-за довольно высокого уровня радиоактивности в пространстве, окружающем реактор, управление и обслуживание в нем осуществляются дистанционно — как во время работы, так и в периоды остановок.
Источником
радиоактивности в
Ядерные
реакции. Ядерная
энергетика.
Атомное ядро
Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотоническим спином Т и состоит из нуклонов - протонов и нейтронов.
Число нуклонов А в ядре называется массовым числом. Число Z называют зарядовым числом ядра или атомным номером. Поскольку Z определяет число протонов, а А - число нуклонов в ядре, то число нейронов в атомном ядре N=A-Z. Атомные ядра с одинаковыми Z, но различными А называются изотопами. В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, 28Si, 29Si, 30Si являются стабильными изотопами ядра Si. Кроме стабильных изотопов, большинство элементов имеют и нестабильные изотопы, для которых характерно ограниченное время жизни.
Ядра с одинаковым массовым числом А называются изобарами, а с одинаковым числом нейтронов-изотонами.
Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения .
Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что масса ядра всегда меньше суммы масс составляющих его нуклонов.
Энергия связи - это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны.
Энергия связи, отнесенная к массовому числу А, называется средней энергией связи нуклона в атомном ядре (энергия связи на один нуклон).
Энергия связи приблизительно постоянна для всех стабильных ядер и примерно равна 8 МэВ. Исключением является область легких ядер, где средняя энергия связи растет от нуля (А=1) до 8 МэВ для ядра 12С.
Аналогично энергия связи на один нуклон можно ввести энергию связи ядра относительно других составных его частей.
В отличие от средней энергии связи нуклонов количество энергии связи нейрона и протона изменяется от ядра к ядру.
Часто
вместо энергии связи используют
величину, называемую дефектом
массы и равную разности масс и массового
числа атомного ядра.
Гамма-Излучение
Гамма-излучение – это коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны (λ<10 -8 см) и вследствие этого ярко выраженными корпускулярными свойствами, т.е. ведет себя подобно потоку частиц – гамма квантов, или фотонов, с энергией hν (ν – частота излучения, h – Планка постоянная).
Гамма-
излучение возникает при
Гамма-излучение,
сопровождающее распад радиоактивных
ядер, испускается при переходах
ядра из более возбужденного
Возбужденное состояние
Основное состояние ядра Е1
Испускание
ядром γ-кванта не влечет за собой
изменения атомного номера или массового
числа, в отличие от других видов
радиоактивных превращений. Ширина
линий гамма-излучений
В межзвёзном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.
Аналогичное явление может иметь место в земных условиях при столновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.
Гамма-излучение
обладает большой проникающей
При комптон-эффекте происходит рассеяние γ-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте γ-квант не исчезает, а лишь изменяет энергию ( длинну волны ) и направление распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым ). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышвют энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.