Радиоактивность

Автор: Пользователь скрыл имя, 28 Октября 2011 в 11:48, курсовая работа

Описание работы

Физические представления в Древнем Китае появились также на основе различного рода технической деятельности, в процессе которой вырабатывались разнообразные технологические рецепты. Естественно, что прежде всего вырабатывались механические представления. Так, китайцы имели представления о силе ( то, что заставляет двигаться), противодействии, (то, что останавливает движение), рычаге, блоке, сравнении весов (сопоставлении с эталоном). В области оптики китайцы имели представление об образовании обратного изображения в "camera obscura". Уже в шестом веке до н.э. они знали явления магнетизма - притяжения железа магнитом, на основе чего был создан компас.

Содержание

1.Введения
2.Радиоактивность
3.Ядерные реакторы
4.Инженерные аспекты термоядерного реактора
5.Ядерная реакция. Ядерная енергетика.
6.Гамма-излучения
7.Атомный реактор
8.Принципы построения атомной енергетики
9.Ядерный синтез завтра
10 .Выивод
11.Список литератури

Работа содержит 1 файл

Радиоактивность.doc

— 287.50 Кб (Скачать)

  Чтобы  исключить джоулевы потери, магнитная  система, как указывалось ранее, будет полностью сверхпроводящей. Для обмоток магнитной системы предполагается использовать сплавы ниобий — титан и      ниобий — олово.

 Создание  магнитной системы реактора на  сверхпроводнике с В 12 Тл и плотностью тока около 2 кА — одна из основных инженерных проблем разработки термоядерного реактора, которую предстоит решить в ближайшее время.

Криогенная  система включает в себя криостат магнитной системы и криопанели в инжекторах дополнительного нагрева плазмы. Криостат имеет вид вакуумной камеры, в которой заключены все охлаждаемые конструкции. Каждая катушка магнитной системы помещена в жидкий гелий. Его пары охлаждают специальные экраны, расположенные внутри криостата для уменьшения тепловых потоков с поверхностей, находящихся при температуре жидкого гелия. В криогенной системе предусмотрены два контура охлаждения, в одном из которых циркулирует жидкий гелий, обеспечивающий требуемую для нормальной работы сверхпроводящих катушек температуру около 4 К, а в другом — жидкий азот, температура которого        составляет 80 - 95 К. Этот контур служит для охлаждения перегородок, разделяющих части с гелиевой и комнатной температурами.

  Криопанели  инжекторов охлаждаются жидким  гелием и предназначены для поглощения газов, что позволяет поддерживать достаточную скорость откачки при относительно высоком разрежении.

Вакуумная система обеспечивает откачку гелия, водорода и примесей из полости дивертора  или из окружающего плазму пространства в процессе работы реактора, а также из рабочей камеры в паузах между импульсами. Чтобы откачиваемый тритий не выбрасывался в окружающую среду, в системе необходимо предусмотреть замкнутый контур с минимальным количеством циркулирующего трития. Откачивать газ можно турбомолекулярными насосами, производительность которых должна несколько превышать достигнутую на сегодняшний день. Длительность паузы для подготовки рабочей камеры к следующему импульсу при этом не превышает 30 с.

Система энергопитания существенно зависит от режима работы реактора. Она заметно проще для токамака, работающего в непрерывном режиме. При работе в импульсном режиме целесообразно использовать комбинированную систему питания - сеть и мотор-генератор. Мощность генератора определяется импульсными нагрузками и достигает 106 кВт.

Бланкет реактора расположен за первой стенкой рабочей камеры и предназначен для захвата нейтронов, образующихся в DT-реакции, воспроизводства "сгоревшего" трития и превращения энергии нейтронов в тепловую энергию. В гибридном термоядерном реакторе бланкет служит также для получения делящихся веществ. Бланкет — это, по существу, то новое, что отличает термоядерный реактор от обычной термоядерной установки. Опыта по конструированию и эксплуатации бланкета пока нет, поэтому потребуются инженерно-конструкторские разработки литиевого и уранового бланкетов.

Тритиевый контур состоит из нескольких независимых  узлов, обеспечивающих регенерацию  откачиваемого из рабочей камеры газа, его хранение и подачу для  подпитки плазмы, извлечение трития из бланкета и возврат его в систему  питания, а также очистку от него отработанных газов и воздуха.

Защита  реактора делится на радиационную и  биологическую. Радиационная защита ослабляет поток нейтронов и снижает энерговыделение в сверхпроводящих катушках. Для нормальной работы магнитной системы при минимальных энергозатратах необходимо ослабить нейтронный поток в 10s—106 раз. Радиационная защита находится между бланкетом и катушками тороидального поля и закрывает всю поверхность рабочей камеры, за исключением каналов дивертора и вводов инжекторов. В зависимости от состава толщина защиты составляет 80- 130см.

  Биологическая  защита совпадает со стенами  реакторного зала и сделана  из бетона толщиной 200 — 250 см. Она предохраняет окружающее пространство от излучения.

Системы дополнительного нагрева плазмы и подпитки ее топливом занимают значительное пространство вокруг реактора. Если нагрев плазмы осуществляется пучками быстрых атомов, то радиационная защита должна окружать весь инжектор, что неудобно для расположения оборудования в реакторном зале и обслуживания реактора. Системы нагрева токами высокой частоты в этом смысле привлекательнее, так как их устройства ввода (антенны) более компактны, а генераторы могут быть установлены за пределами реакторного зала. Исследования на токамаках и разработка конструкции антенн позволят сделать окончательный выбор системы нагрева плазмы.

Система управления — неотъемлемая часть  термоядерного реактора. Как и  в любом реакторе, из-за довольно высокого уровня радиоактивности в  пространстве, окружающем реактор, управление и обслуживание в нем осуществляются дистанционно — как во время работы, так и в периоды остановок.

  Источником  радиоактивности в термоядерном  реакторе являются, во-первых, тритий, распадающийся с испусканием электронов и низкоэнергетичных 7-квантов (период его полураспада составляет около 13 лет), а во-вторых, радиоактивные нуклиды, образующиеся при взаимодействии нейтронов с конструкционными материалами бланкета и рабочей камеры. Для наиболее распространенных из них (стали, сплавов молибдена и ниобия) активность достаточно велика, но все же примерно в 10—100 раз меньше, чем в ядерных реакторах аналогичной мощности. В перспективе в термоядерном реакторе предполагается использовать материалы, обладающие малой наведенной активностью, например алюминий и ванадий. Пока же термоядерный реактор-токамак проектируется с учетом дистанционного обслуживания, что предъявляет дополнительные требования к его конструкции. В частности, он будет состоять из соединяемых между собой одинаковых секций, которые заполнят различными стандартными блоками (модулями). Это позволит в случае необходимости сравнительно просто заменять отдельные узлы с помощью специальных манипуляторов. 
 
 
 
 
 
 
 
 
 

Ядерные реакции. Ядерная  энергетика. 

      Атомное  ядро

Атомное ядро характеризуется зарядом  Ze, массой  М, спином J, магнитным  и электрическим  квадрупольным моментом Q, определенным радиусом R, изотоническим  спином Т  и состоит из нуклонов - протонов и нейтронов.

Число нуклонов А в ядре называется массовым числом. Число Z называют зарядовым числом ядра или атомным номером. Поскольку Z определяет число протонов, а А - число нуклонов в ядре, то число нейронов в атомном ядре N=A-Z. Атомные ядра с одинаковыми Z, но различными А называются изотопами. В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, 28Si, 29Si, 30Si являются стабильными изотопами ядра Si. Кроме стабильных изотопов,  большинство элементов имеют и нестабильные изотопы, для которых характерно ограниченное время жизни.

Ядра  с одинаковым массовым числом А называются изобарами, а с одинаковым числом нейтронов-изотонами.

Все атомные  ядра разделяются на стабильные и  нестабильные. Свойства стабильных ядер остаются неизменными неограниченно  долго. Нестабильные же ядра испытывают различного рода превращения .

Экспериментальные измерения масс атомных ядер, выполненные  с большой точностью, показывают, что масса ядра всегда меньше суммы  масс составляющих его нуклонов.

Энергия связи - это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны.

Энергия связи, отнесенная к массовому числу  А, называется средней энергией связи нуклона в атомном ядре (энергия связи на один нуклон).

Энергия связи  приблизительно постоянна  для всех стабильных ядер и примерно равна 8 МэВ. Исключением является область легких ядер, где средняя энергия связи растет от нуля (А=1) до 8 МэВ для ядра 12С.

Аналогично  энергия связи на один нуклон можно  ввести энергию связи ядра относительно других составных его частей.

В отличие  от средней энергии  связи нуклонов количество энергии связи нейрона и протона изменяется от ядра к ядру.

Часто вместо энергии связи используют величину, называемую дефектом массы  и равную разности масс и массового числа атомного ядра. 

Гамма-Излучение

Гамма-излучение  – это коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны (λ<10 -8 см) и вследствие этого ярко выраженными корпускулярными свойствами, т.е. ведет себя подобно потоку частиц – гамма квантов, или фотонов, с энергией (ν – частота излучения, h – Планка постоянная).

Гамма- излучение возникает при распадах радиоактивных ядер, элементарных частиц,  при аннигиляции пар частицы-античастица, а также при прохождении быстрых заряженных частиц через вещество.

Гамма-излучение, сопровождающее распад радиоактивных  ядер, испускается при переходах  ядра из более возбужденного энергетического  состояния в менее возбужденное или в основное. Энергия  γ – кванта равна разности энергий Δε состояний, между которыми происходит переход.

Возбужденное  состояние

                                                 Е2             

                                                        hν 
 

              Основное состояние ядра    Е1 

Испускание  ядром γ-кванта не влечет за собой  изменения атомного номера или массового  числа, в отличие от других видов  радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно  мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является  линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося π0- мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

В межзвёзном пространстве гамма-излучение может  возникать в результате соударений квантов более мягкого  длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

Аналогичное явление может иметь место  в земных условиях при столновении  электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение  обладает большой проникающей способностью, т.е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образавание пар электрон-позитрон. При фотоэффекте происходит поглощение γ-кванта одним из электронов атома, причём энергия γ-кванта преобразуется ( за вычетом энергии связи электрона в атоме ) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии γ-квантов ( £100 кэв ) на тяжелых элементах ( Pb, U).

При комптон-эффекте происходит рассеяние γ-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте γ-квант не исчезает, а лишь изменяет энергию ( длинну волны ) и направление распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым ). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышвют энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

Информация о работе Радиоактивность