Автор: Пользователь скрыл имя, 06 Апреля 2012 в 15:16, доклад
В порыве за открытиями в конце XIX в. двумя учеными: Пьером Кюри и Марией Сладковской-Кюри было открыто явление радиоактивности. Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику.
Таблица 2. Воздействие ионизирующего излучения на ткани организма.
Последние исследования Киевского
Института нейрохирургии
Механизм воздействия радиоактивных выбросов на организм человека.
Рассмотрим механизм
Пути проникновения радиации в организм человека
Радиоактивные
изотопы
Радиоактивные частицы из
могут проникать в организм воздуха во время дыхания или на ее поверхности, испус-
вместе с пищей или водой. могут попасть в легкие. Но кая гамма-излучение, способны
Через органы пищеварения они облучают не только облучить организм снаружи. Эти
они распространяются
по легкие,
а также распро-
изотопы также переносятся
всему организму.
Источники радиационного излучения:
Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).
Искусственные
источники радиационного
Основной вклад в загрязнение
от искусственных источников вносят
различные медицинские
Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный. Дело в том, что процесс производства энергии из ядерного топлива сложен и проходит в несколько стадий.
Дозовые нагрузки на население от разных источников представлены на рис.1.
Рис.1. Дозовая нагрузка населения от разных источников радиации
Ядерный
топливный цикл начинается с добычи
и обогащения урановой руды, затем
производится само ядерное топливо,
а после отработки топлива
на АЭС иногда возможно вторичное
его использование через
На каждом этапе происходит выделение в окружающую среду радиоактивных веществ, причем их объем может сильно варьироваться в зависимости от конструкции реактора и других условий. Кроме того, серьезной проблемой является захоронение радиоактивных отходов, которые еще на протяжении тысяч и миллионов лет будут продолжать служить источником загрязнения.
Дозы
облучения различаются в
Из
продуктов деятельности АЭС наибольшую
опасность представляет тритий. Благодаря
своей способности хорошо растворяться
в воде и интенсивно испаряться тритий
накапливается в использованной
в процессе производства энергии
воде и затем поступает в водоем-
До
сих пор речь шла о нормальной
работе атомных электростанций, но
на примере Чернобыльской трагедии
мы можем сделать вывод о
Существует
огромное количество общеупотребительных
предметов, являющихся источником облучения.
Это, прежде всего, часы со светящимся
циферблатом, которые дают годовую
ожидаемую эффективную
При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов.
ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ ПРЕДПРИЯТИЙ ЯДЕРНОГО ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО ЦИКЛА
Если исключить взрывы атомных устройств и аварийные ситуации, то основным источником радиационного воздействия на биосферу являются предприятия ядерного топливно-энергетического цикла (ЯТЦ) в штатном режиме.
Известны следующие виды воздействия ЯТЦ на окружающую среду:
1. Расход природных ресурсов (земельные угодья, вода, сырье для основных фондов ЯТЦ и т.д.).
При добыче и переработке урановой руды отчуждаются значительные земельные плошади для размещения пустой породы. На каждый Гвт (эл.) энергии, получаемой на атомной станции, образуется несколько миллионов тонн пустой породы.
Большая часть земельных угодий, расходуемых при переработке руды, приходится на пруды – хвостохранилища, куда поступает около 10 т на 1 ГВт (эл.) в год хвостовых растворов.
Расход воды предприятий ЯТЦ обусловлен необходимостью охлаждения технологического оборудования и применения в технологиях. Максимальное водопотребление на единицу электроэнергии приходится на охлаждение оборудования АЭС и предприятия по обогащению изотопов урана (10 м3 на 1 ГВт (эл.) и 5x10 на ГВт (эл.) соответственно).
2.
Тепловое загрязнение
Тепловые сбросы имеют место на всех стадиях ЯТЦ, достигая максимальных значений на АЭС, где мощность тепловых сбросов достигает 2 ГВт на каждый ГВт электрической мощности при 33% КПД. Тепловые сбросы АЭС вносят вклад в антропогенное поступление тепла в биосферу и в приближение к предельно допустимому уровню антропогенных сбросов тепловой энергии, равному в среднем 2 Вт/м2. Этот предел рассчитан из принципа недопущения изменения среднегодовой температуры на 1°С.
3.
Выброс загрязняющих веществ
химической природы в
4.
Радиоактивное загрязнение
Важнейшей особенностью ЯТЦ является то, что в процессах производства энергии на АЭС и переработки отработанного топлива образуется большое количество опасных искусственных радионуклидов. Основная часть радиоактивных отходов ЯТЦ имеет высокую удельную активность. Некоторые из радионуклидов имеют значительные (от сотен до миллионов и более лет) периоды полураспада. Это предопределяет необходимость надежной изоляции высокоактивных отходов ЯТЦ от биосферы.
Наиболее значимый вклад в загрязнение биосферы дают долгоживущие радионуклиды 14С, 85Кr, 3Т, 129I. Это обусловлено высокой миграционной способностью, приводящей к их рассеиванию на большие расстояния за время, меньше периодов полураспада. Из всего количества четырех радионуклидов, поступающих в биосферу с отходами ЯТЦ до 70-80% 14С приходится на стадию переработки облученного топлива на радиохимическом заводе, остальная часть – на АЭС. 99% 85Кr, 3Т, 129I выбрасывается при переработке топлива и около 1% – с АЭС.
К основным проблемам радиационной безопасности для окружающей среды при работе ЯТЦ в штатном режиме можно отнести следующие:
Образование трансурановых элементов. Особенно опасным является 239Рu. Таким образом, радиоактивные вещества занимают особое место среди загрязняющих окружающую среду агентов.
Чернобыльская авария
Крупнейшая
в мире ядерная авария
Чернобыльская АЭС расположена на территории Украины вблизи города Припять, в 18 километрах от города Чернобыль, в 16 километрах от границы с Белоруссией и в 110 километрах от Киева.
Ко времени аварии на ЧАЭС использовались четыре реактора РБМК-1000 (реактор большой мощности канального типа) с электрической мощностью 1000 МВт (тепловая мощность 3200 МВт) каждый. Ещё два аналогичных реактора строились. ЧАЭС производила примерно десятую долю электроэнергии Украины.
Примерно в 1:24 26 апреля 1986 года на 4-м энергоблоке Чернобыльской АЭС произошёл взрыв, который полностью разрушил реактор. Здание энергоблока частично обрушилось, при этом погибло 2 человека — оператор насосов ГЦН (Главный Циркуляционный Насос) Валерий Ходемчук (тело не найдено, завалено под обломками двух 130-тонных барабан-сепараторов), и сотрудник пуско-наладочного предприятия Владимир Шашенок (умер от перелома позвоночника и многочисленных ожогов в 6:00 в Припятской МСЧ, утром 26-го апреля). В различных помещениях и на крыше начался пожар. Впоследствии остатки активной зоны расплавились. Смесь из расплавленного металла, песка, бетона и частичек топлива растеклась по подреакторным помещениям. В результате аварии произошёл выброс в окружающую среду радиоактивных веществ, в том числе изотопов урана, плутония, иода-131 (период полураспада 8 дней), цезия-134 (период полураспада 2 года), цезия-137 (период полураспада 33 года), стронция-90 (период полураспада 28 лет).
В разное время выдвигались различные версии для объяснения причин чернобыльской аварии. Специалисты предлагали разные гипотезы о том, что привело к скачку мощности. Среди причин назывались: так называемый «срыв» циркуляционных насосов (нарушение их работы в результате кавитации), вызванный превышением допустимого расхода воды, разрыв трубопроводов большого сечения и другие. Рассматривались также различные сценарии того, как конкретно развивались процессы, приведшие к разрушению реактора после скачка мощности, и что происходило с топливом после этого. Некоторые из версий были опровергнуты исследованиями, проведёнными в последующие годы, другие остаются актуальными до сих пор. Хотя среди специалистов существует консенсус по вопросу о главных причинах аварии, некоторые детали до сих пор остаются неясными. Важность этих деталей обуславливается оценками выброшенного в течение аварии топлива и радиоактивных материалов в окружающую среду, а следовательно, и необходимыми масштабами работ по ликвидации аварии (например, сооружение объектов «Укрытие-2»).