Производство электроэнергии

Автор: Пользователь скрыл имя, 18 Декабря 2011 в 10:06, доклад

Описание работы

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

Содержание

Введение.
1. Производство электроэнергии.
1. типы электростанций.
2. альтернативные источники энергии.
2. Передача электроэнергии.
трансформаторы.
3. Использование электроэнергии.

Работа содержит 1 файл

физика.doc

— 62.00 Кб (Скачать)

  Введение.

  1. Производство  электроэнергии.

  1.    типы электростанций.

  2.    альтернативные источники энергии.

  2. Передача  электроэнергии.

  • трансформаторы.

  3. Использование  электроэнергии.

  Производство  электроэнергии.

  Типы  электростанций.

  Тепловая  электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

  На тепловых электростанциях химическая энергия  топлива преобразуется сначала  в механическую,

  Современные паровые турбины для ТЭС —  весьма совершенные, быстроходные, высокоэкономичные  машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это  не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

  Из курса  физики  известно, что КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.

  Гидроэлектрическая  станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования,   преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

  Напор ГЭС  создается концентрацией падения  реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции —гидроагрегаты, вспомогательное оборудование,   устройства  автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера илиавтооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

  Важнейшая особенность гидроэнергетических  ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные, удельные капиталовложения на 1 кВтустановленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств.

  Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu).

  Наиболее  часто на АЭС применяют 4 типа реакторов  на тепловых нейтронах:

  1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя;

  2) графитоводные  с водяным теплоносителем и  графитовым замедлителем;

  3) тяжеловодные  с водяным теплоносителем и  тяжёлой водой в качестве замедлителя;

  4) граффито - газовые с газовым теплоносителем и графитовым замедлителем.

  Альтернативные  источники энергии.

  Энергия солнца.

  В последнее  время интерес к проблеме использования  солнечной энергии резко возрос, ведь потенциальные возможности  энергетики, основанной на использование  непосредственного солнечного излучения, чрезвычайно велики.

  Простейший  коллектор  солнечного  излучения представляет собой зачерненный металлический (как правило,  алюминиевый)  лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии,  поглощенной  коллектором, жидкость поступает для непосредственного использования.

  Солнечная энергетика относится к наиболее  материалоемким видам производства   энергии.  Крупномасштабное  использование солнечной энергии влечет за собой гигантское  увеличение  потребности в материалах,  а, следовательно, и в трудовых ресурсах для добычи сырья,  его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки.

  Пока еще  электрическая энергия, рожденная солнечными лучами,  обходится  намного  дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут  на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

  Ветровая энергия.

  Огромна энергия  движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы  гидроэнергии  всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические  условия позволяют  развивать ветроэнергетику на огромной территории.

  Но в наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Потому к созданию конструкций ветроколеса-сердца любой ветроэнергетической установки привлекаются специалисты-самолетостроители,  умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

  Энергия Земли.

  Издавна люди знают  о  стихийных  проявлениях  гигантской энергии,  таящейся в недрах земного шара.  Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле.  Мощность извержения  даже  сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека.  Правда,  о  непосредственном  использовании энергии вулканических извержений говорить не приходится, нет пока у людей  возможностей  обуздать  эту  непокорную стихию.

  Энергия Земли  пригодна не только для отопления  помещений, как это происходит в  Исландии, но и для получения электроэнергии. Уже давно работают электростанции, использующие горячие подземные  источники. 
 
 
 
 
 
 
 
 
 
 
 
 

  Передача  электроэнергии.

  Трансформаторы.

  Трансформатор — очень простое устройство, которое позволяет, как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Впервые трансформаторы были использованы в 1878 г. русским ученым П. Н. Яблочковым для питания изобретенных им «электрических свечей» — нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Московского университета И. Ф. Усагиным, сконструировавшим усовершенствованные трансформаторы.

  Трансформатор состоит из замкнутого железного  сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной. 

  Действие  трансформатора основано на явлении  электромагнитной индукции. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой:

  е = - Δ Ф/ Δ t

  Если Ф = Фсоsωt, то

  е = ω Фsinωt, или

  е = Esinωt ,

  где E0= ω Ф- амплитуда ЭДС в одном витке.

  В житейской  практике часто приходится иметь  дело с трансформаторами. Кроме тех  трансформаторов, которыми мы пользуемся волей-неволей из-за того, что промышленные приборы рассчитаны на одно напряжение, а в городской сети используется другое, — кроме них приходится иметь дело с бобинами автомобиля. Бобина — это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя. Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот.

  Для сварочных  аппаратов требуются понижающие трансформаторы. Для сварки нужны  очень сильные токи, и трансформатор  сварочного аппарата имеет всего лишь один выходной виток.   

  Передача  электроэнергии

  Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров.

  Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает  их. В соответствии с законом Джоуля — Ленца, энергия, расходуемая на нагрев проводов линии, определяется формулой

  Q=I2Rt

  где R — сопротивление  линии. При большой длине линии  передача энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно, идти по пути уменьшения сопротивления R линии посредством увеличения площади поперечного сечения проводов. Но для уменьшения R, к примеру, в 100 раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоящего цветного металла, не говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в линии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода.

  Так как  мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, например, в высоковольтной линии передачи Волжская ГЭС — Москва используют напряжение в 500 кв. Между тем генераторы переменного тока строят на напряжения, не превышающие 16—20 кв., так как более высокое напряжение потребовало бы принятия более сложных специальных мер для изоляции обмоток и других частей генераторов.

  Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор  увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики.

  Для непосредственного  использования электроэнергии в  двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов. Причем обычно понижение напряжения и соответственно увеличение силы тока происходит в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире. Схема передачи и распределения электроэнергии приведена на рисунке.  

  Электрические станции ряда областей страны соединены  высоковольтными линиями передач, образуя общую электросеть, к  которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Производство электроэнергии