Природа шаровой и линейной молнии

Автор: Пользователь скрыл имя, 16 Февраля 2012 в 20:27, реферат

Описание работы

В данном реферате речь пойдет об одном из самых интересных, с точки зрения физики, явлений природы — шаровой и линейной молниях. Шаровой молнией принято называть светящиеся образования, по форме напоминающие шар. Это явление возникает иногда во время грозы в воздухе, чаще всего, вблизи поверхности. Всегда сопровождаясь обычной молнией, шаровая молния сильно отличается от неё и по своему поведению, и по внешнему виду. В отличие от обычной (линейной) молнии, шаровая не сопровождается громом, она практически бесшумна

Содержание

Введение…………………………………………………………………….3
Общее представление о шаровой молнии……………………………4
Физическая природа шаровой молнии………………………………6
Природа линейной молнии……………………………………………15
Основные рекомендации……………………………………………...16
Заключение……………………………………………………………….17
Список использованной литературы…………………………………..19

Работа содержит 1 файл

шар молния.doc

— 120.00 Кб (Скачать)

     Как возможный пример такого фиксированного положения шаровой молнии рассмотрим случай, когда радиоволны падают на проводящую поверхность земли и отражаются. Тогда благодаря интерференции образуются стоячие волны и на расстояниях, равных К, длине волны, помноженной на 0,25; 0,75; 1,25; 1,75; и т. д., будут образовываться неподвижные в пространстве пучности, в которых напряжение электрического поля удваивается по сравнению с падающей волной. Вблизи этих поверхностей благодаря повышенному напряжению будут благоприятные условия как для создания начального пробоя, так и для дальнейшего развития и поддержания ионизации в облаке, образующем шаровую молнию. Таким образом, поглощение электромагнитных колебаний ионизованным газом может происходить только в определенных поверхностях, параллельных рельефу земли. Это и будет фиксировать в пространстве положение шаровой молнии.

     Такой механизм объясняет, почему шаровая молния обычно создается на небольшом расстоянии от земли и часто передвигается в горизонтальных плоскостях. При этом наименьшее расстояние центра шаровой молнии до проводящей поверхности будет равно1/4 длины волны и, следовательно, зазор между отражающей поверхностью и краем шара должен быть примерно равен его радиусу.

     При интенсивных колебаниях вполне возможно, чтобы в ряде пучностей образовывались отдельные шаровые молнии, на расстоянии полудлины волны друг от друга. Такие цепочки из шаровых молний наблюдаются, они носят название "четочных" молний и даже были засняты [2].

     Наша гипотеза также может объяснить, почему иногда шаровая молния пропадает со взрывом, который не причиняет разрушений [1, 2]. Когда подвод мощности внезапно прекращается, то при малых размерах остывание шара произойдет так быстро, что образуется сфера разреженного воздуха, при быстром заполнении которой возникает ударная волна небольшой силы. Когда же энергия медленно высвечивается, гашение будет процессом спокойным и бесшумным.

     Выдвинутая нами гипотеза может дать удовлетворительное объяснение, пожалуй, наиболее непонятному из свойств шаровой молнии — ее проникновению в помещение через окна, щели и чаще через печные трубы. Попав в помещение, светящийся шар в продолжение нескольких секунд либо парит, либо бегает по проводам [1, 2, 4]. Таких случаев описано столько, что их реальность не вызывает сомнения.

     С нашей точки зрения, весьма интересен случай [5], когда в аэроплан, пересекающий грозовую тучу на высоте 2800 м, влетела шаровая молния. Нашей гипотезой все эти явления объясняются тем, что проникновение в замкнутые помещения шаровых молний происходит благодаря тому, что они следуют по пути коротковолновых электромагнитных колебаний, распространяющихся либо через отверстия, либо по печным трубам или проводам как по волноводам. Обычно размер печной трубы как раз соответствует тому критическому сечению волновода, в котором могут свободно распространяться волны длиною до 30-40 см, что и находится в соответствии с наблюдаемыми размерами шаровых молний, проникающих в помещение [1].

     Таким образом, гипотеза о происхождении шаровой молнии за счет коротковолновых электромагнитных колебаний может объяснить не только ряд других известных и непонятных явлений, связанных с шаровой молнией, как-то: ее фиксированные размеры, малоподвижное положение, существование цепочек, взрывная волна при исчезновении, — но также ее проникновение в помещение.

     Тут следует поставить вопрос: не происходит ли давно наблюдаемое в природе явление тлеющего кистеобразного свечения, называемого "огни св. Эльма", также за счет электромагнитных колебаний, но более слабых мощностей? До сих пор [6] это свечение объяснялось стеканием зарядов с острия, происходящим благодаря постоянному напряжению, возникающему при больших разностях потенциалов между землей и тучей. Такое объяснение было вполне естественно до тех пор, пока это свечение наблюдалось на земле, где можно указать замкнутый путь постоянного тока, но теперь описаны случаи, когда "огни св. Эльма" продолжительное время наблюдаются на фюзеляжах летящих самолетов [6]. Поэтому возможно, что и тут выдвинутая нами гипотеза может помочь решению этой трудности.

     Хотя выдвинутая гипотеза успешно разрешает ряд основных трудностей понимания процесса шаровой молнии, все же следует указать, что этим еще вопрос до конца не решается, так как нужно еще показать существование в природе электромагнитных колебаний, питающих шаровую молнию. Тут в первую очередь нужно ответить на естественно возникающий вопрос: почему во время грозы излучения электромагнитных колебаний в области той длины волны, которая нужна для создания шаровой молнии, до сих пор не описаны в литературе?

     Пока еще не было направлено внимание на обнаружение во время грозы этих волн, нам думается, можно предположить следующее. Поскольку шаровая молния — редкое явление, то естественно считать, что возникновение соответствующих радиоволн тоже редко происходит, кроме того, еще реже можно ожидать, чтобы они попадали на приемные аппараты в той коротковолновой области радиоволн от 35 до 70 см, которая пока еще сравнительно мало используется. Поэтому как следующий шаг проверки выдвинутых предположений следует выработать соответствующий экспериментальный метод наблюдения, попытаться обнаружить во время грозы радиоизлучения в указанном коротковолновом диапазоне волн.

     Что касается источника этих радиоволн, то, по-видимому, есть два факта в наблюдениях над шаровыми молниями, которые могут помочь пролить свет на механизм их возникновения. Один из них — то, что шаровая молния наиболее часто возникает к концу грозы; второй — то, что шаровой молнии непосредственно предшествует обычная.

     Первый факт указывает, что наличие ионизованного воздуха помогает созданию радиоволн, а второй — что возбудителем этих колебаний является грозовой разряд. Это ведет к естественному предположению, что источником радиоволн является колебательный процесс, происходящий в ионизованной атмосфере либо у тучи, либо у земли. В последнем случае, если источник находится у земли, то район, захваченный интенсивным радиоизлучением, будет ограничен и будет непосредственно прилегать к месту, где находится шаровая молния. Интенсивность радиоколебаний может быстро падать при удалении от этого места, и поэтому на значительных расстояниях для наблюдения будет нужна чувствительная аппаратура. Если радиоволны излучаются самой грозовой тучей, то они будут захватывать большие районы и их обнаружение даже малочувствительным приемником не представит труда.

     Наконец, как второе возможное направление для экспериментальной проверки выдвинутой гипотезы надо указать на возможность создания разряда, подобного шаровой молнии, в лабораторных условиях. Для этого, очевидно, нужно располагать мощным источником радиоволн непрерывной интенсивности в дециметровом диапазоне и уметь их фокусировать в небольшом объеме. При достаточном напряжении электрического поля должны возникнуть условия для безэлектродного пробоя, который путем ионизационного резонансного поглощения плазмой должен развиться в светящийся шар с диаметром, равным примерно четверти длины волны.

     Более двухсот лет тому назад была установлена физическая природа линейной молнии, но природа шаровой молнии остаётся не выясненной до настоящего времени.

     Можно выделить две группы гипотез, касающиеся физической природы шаровой молнии. Согласно первой группе предположений, шаровая молния непрерывно получает энергию снаружи. Гипотезы, согласно которым шаровая молния после своего возникновения становится самостоятельно существующим объектом образуют другую группу. Однако все эти гипотезы нельзя назвать правдоподобными, хотя на первый взгляд они производят такое впечатление.

     В 1974 г И.П. Стахановым была предложена так называемая кластерная гипотеза , согласно которой физическую природу шаровой молнии можно объяснить на основе понятия кластер.

     Кластер – это положительный или отрицательный ион, окутанный плотным облаком из нейтральных молекул. Рассмотрим молекулу воды. Она является полярной молекулой, поскольку центры её положительных зарядов не совпадают с центрами отрицательных зарядов. Она в силу своей полярности удерживается вблизи ионов силами электростатического притяжения. Гидратированным называется ион, окружённый молекулами воды. Согласно гипотезе Стаханова, вещество шаровой молнии состоит из таких комплексов.

     Таким образом, кластерная гипотеза Стаханова утверждает, что шаровая молния – это самостоятельно существующее тело (т.е. тело, к которому не подводится энергия от внешних источников. Это тело состоит из тяжелых положительных и отрицательных ионов, рекомбинация которых серьезно замедлена из-за гидратации ионов.

     В отличие от остальных, данная гипотеза достаточно хорошо поясняет все свойства шаровой молнии, которые были выявленные в результате многочисленных наблюдений за этим явлением. И все же нужно признать, что пока это – всего лишь одна из самых правдоподобных гипотез только гипотеза, которая не подтверждена никакими фактами.

     Природа шаровой молнии до сих пор остается загадкой . П.Л. Капицей , более 40 лет назад, была предложена резонансную модель шаровой молнии. В ней, впервые, возникновение и устойчивость шаровой молнии объясняется влиянием коротковолновых резонансных электромагнитных колебаний во время грозы на движение ионов. Резонансная модель П.Л. Капицы объяснив многое, не объяснила причин возникновения и существования интенсивных коротковолновых электромагнитных колебаний во время грозы.

     В данной работе на основе ряда положений о том, что: внутри шаровой молнии существует резонансное коротковолновое электромагнитное излучение (длинна волны l соизмерима с ее геометрическими размерами d наиболее устойчивыми состояниями движения в природе являются резонансные ], характер которых един и не зависит от природы взаимодействующих тел неустойчивые состояния в статике могут стать устойчивыми в динамике (ловушки для заряженных частиц, перевернутый маятник П.Н. Капицы вне и в зонах параметрического резонанса, системы из одного, двух и более намагниченных гироскопов при резонансе)  

     3. Природа линейной  молнии 
 

     Чаще  всего мы наблюдаем молнии, напоминающие извилистую реку с притоками. Такие молнии называют линейными, их длина при разряде между облаками достигает более 20 км. Молнии других видов можно увидеть значительно реже. Канал молнии, через который протекает ток, сильно разогревается и ярко светит. Температура канала достигает десятков тысяч градусов, а давление воздуха повышается до нескольких сотен мегапаскалей, затем воздух расширяется, происходит как бы взрыв раскаленных газов. Это мы и воспринимаем как гром. Удар молнии в наземный предмет может вызвать пожар. Воздух проводит электричество в разных местах различно, поэтому электрический разряд проходит по тем местам, где встречает наименьшее сопротивление. Вот поэтому мы часто наблюдаем извилистую линию молнии. Молния чаще поражает высокие сооружения, т.е. места, где меньше толщина слоя воздуха между грозовым облаком и наземным предметом – высокой постройкой, высоким деревом и т.п. молния может ударить и в ровную поверхность земли, но там, где электрическое сопротивление почвы меньше. По этой причине молния поражает берега рек и ручьев. При ударе молнии, например, в дерево оно нагревается, содержащаяся в нем влага испаряется, а давление образовавшегося пара и нагревшихся газов приводит к разрушениям. Известен случай, когда молния, ударившая в старый тополь высотой 30 м и охватом 3 м, разбила его на мелкие куски. Молния может производить и магнитные действия: намагнитить железные и стальные вещи, перемагнитить  компас.  Случалось, что это обстоятельство служило причиной изменения курса корабля. Подобные «шутки» молнии иногда приводили к авариям судов.

     В результате своих исследований атмосферного электричества М.В. Ломоносов и  В. Фринклин пришли к заключению, что человек может отвлечь молнию от своих жилищ с помощью высоких заземленных металлических стержней – «громоотводов» или, как их правильнее называть, молниеотводов. Основное назначение молниеотводов разных видов – не принимать удар на себя, а предотвратить его возникновение.

     Первый  в мире молниеотвод в июне 1754 году водрузил над крестом своего храма  сельский священник из Моравии Прокоп Дивиш, крестьянский сын, ученый и изобретатель. Первый в России молниеотвод появился в 1756 году над Петропавловским собором в Петербурге. Он был сооружен после того, как молния дважды ударила в шпиль собора и подожгла его.  В течение короткого времени молниеотвод нашел широкое распространение во всем мире.

4. Основные рекомендации

 

     Никогда не бегите от шаровой молнии. Ваш бег создает поток воздуха, который тянет молнию за вами;

     Нужно постараться осторожно и плавно свернуть с пути следования ШМ и держаться дальше от нее, но, не поворачиваясь к ней спиной;

     Шаровые молнии часто движутся под действием потоков воздуха. Поэтому лучше держаться с наветренной стороны относительно движения ШМ. Находясь в помещении вместе с шаровой молнией, не находитесь на сквозняке, так как в этом случае, ШМ обязательно будет приближаться к вам;

     Не бросайте в шаровую молнию камнями, палками, мячами, и тем более не дотрагивайтесь до нее руками. ШМ может взорваться с силой разорвавшегося снаряда или мины;

     При поражении человека шаровой молнией, пострадавшего следует перенести в сухое помещение со свежим воздухом, накрыть теплым одеялом, начать делать искусственное дыхание и немедленно вызвать скорую помощь.

     Если при появлении шаровой молнии вы от волнения забудете все эти правила, то запомните хотя бы главное: с ШМ надо вести себя точно так же, как со злой собакой: главное не бежать, а плавно и медленно уйти с траектории ее движения.

     Заключение 

     Подведем  итоги всего вышесказанного. Начнем с того, что молния - одно из самых  разрушительных и устрашающих природных явлений, с которыми повсеместно сталкивается человек.

     В настоящий момент современный уровень  науки и техники позволяет  создать действительно функционально  надежную и соответствующую техническому уровню систему молниезащиты.

Информация о работе Природа шаровой и линейной молнии