Поляризация света

Автор: Пользователь скрыл имя, 25 Октября 2011 в 09:05, реферат

Описание работы

Интерференция света. Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветные. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее.

Работа содержит 1 файл

Интерференция света.doc

— 137.50 Кб (Скачать)

     Интерференция света. Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветные. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волн (рис. 262). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода Δl, кратной целому числу длин волн:

наблюдается интерференционный  максимум.

При разности Δl, кратной нечетному числу полуволн:

 

наблюдается интерференционный  минимум. Когда выполняется условие  максимума для одной длины световой волны, то оно не выполняется для других длин волн. Поэтому освещаемая белым светом тонкая бесцветная прозрачная пленка кажется окрашенной. При изменении толщины пленки или угла падения световых волн разность хода изменяется и условие максимума выполняется для света с другой длиной волны.

Явление интерференции  в тонких пленках применяется  для контроля качества обработки  поверхностей, просветления оптики.

     Дифракция света. При прохождении света через 
малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца (рис. 263). Если свет проходит через узкую щель, то получается картина, представленная на рисунке 264.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называется дифракцией света»

Появление чередующихся светлых и

темных колец  или полос в области геометрической тени французский физик Френель  объяснил тем, что световые волны, приходящие в результате дифракции из разных точек отверстия в одну точку на экране, интерферируют между собой.

     Поляризация света. Опыт показывает, что интенсивность светового пучка, проходящего через некоторые прозрачные кристаллы, например исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориентации кристаллов свет проходит через второй кристалл без ослабления. Если же второй кристалл повернут на 90 градусов от первоначального положения, то свет через него не проходит.

Это явление  получает объяснение, если принять что свет представляет собой поперечные волны. При прохождении через первый кристалл происходит поляризация света, т. е. кристалл пропускает только такие волны, в которых колебания вектора E напряженности электрического поля совершаются в одной плоскости. Эта плоскость называется плоскостью поляризации. Если плоскость, в которой пропускаются колебания вторым кристаллом, совпадает с плоскостью поляризации, то поляризованный свет проходит через второй кристалл без ослабления. При повороте кристалла на 90 градусов поляризованный свет не проходит через кристалл. Явление поляризации света доказывает волновую природу света и поперечность световых волн.

Дисперсия света. Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разнового цвета. Цветную полоску на экране называют сплошным спектром. Явление зависимости скорости света от длины волны (или частоты) называется дисперсией света. Сплошной спектр наблюдается при разложении света, излучаемого нагретыми твердыми и жидкими телами.

Дисперсия света была открыта И. Ньютоном.

Объясняется разложение белого света тем, что белый свет состоит из электромагнитных волн с разной длиной волны и показатель преломления света зависит от его длины волны. Наибольшее значение он имеет для света с самой короткой ДЛИНОЙ ВОЛНЫ - фиолетового света

Наименьшим показателем  прлоиления обладает длинноволновый свет – красный. Абсолютный показатель преломления  света определяется отношением скорости света в вакууме к скооисти света в среде. (n=c/u) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1)Объяснение  интерференции света

Интерференция света, пространственное перераспределение  энергии светового излучения  при наложении двух или нескольких световых волн; частный случай общего явления интерференции волн. Некоторые явления И. с. наблюдались ещё И. Ньютоном в 17 в., однако не могли быть и объяснены с точки зрения его корпускулярной теории. Правильное объяснение И. с. как типично волнового явления было дано в нач. 19 в. франц. физиком О. Ж. Френелем и англ. учёным Т. Юнгом. Наиболее часто наблюдается И. с., характеризующаяся образованием стационарной (постоянной во времени) интерференционной картины (и. к.) - регулярного чередования областей повышенной и пониженной интенсивности света к явлениям И. с. относятся также световые биения и явления корреляции интенсивности. Строгое объяснение этих явлений требует учёта как волновых, так и корпускулярных св-в света и даётся на основе квант. электродинамики.

Интерференция света - это сложение полей световых волн от двух или нескольких (сравнительно небольшого числа) источников. В общем случае поляризация каждой из интерферирующих волн (т. е. направление, вдоль которого колеблется вектор электрического поля; магнитное поле не учитываем) имеет свое направление, и сложение двух волн есть векторное сложение. Обычно рассматривают интерференцию волн, имеющих одинаковую поляризацию. Тогда волны складываются алгебраически.

Пусть имеются два  источника гармонических электромагнитных волн, создающих на некотором отдалении  от себя в точке наблюдения поля, колеблющиеся следующим образом:

E1(t) = E1 cos(?t + ?1), E2(t) = E2 cos(?t + ?2 ).

Здесь Е1 и Е2 - амплитуды колебаний (происходящих с одинаковой частотой); ?1 и ?2 - их фазы. Для простоты положим E1 = E2 = E0. Тогда результирующее колебание имеет вид:

E = 2E0 cos1/2(?1 - ?2) Х

Х cos[??t + 1/2(?1 + ?2 )] = ER cos(?t + ?R).

Следовательно, результирующее колебание есть также синусоидальное колебание, но с иными амплитудой и фазой:

ER = 2E0 cos1/2(?1 - ?2), ?R= 1/2(?1 + ?2 ). (1)

Результирующее поле имеет амплитуду , связанную с амплитудами соотношением

E2R = E21 + E22 + 2E1E2 cos(?2 -??1). (2)

Как известно, интенсивность  электромагнитной волны, проходящей через  некоторую точку пространства, пропорциональна  квадрату напряженности электрического поля в этой точке. Следовательно, суммарная интенсивность света в точке наблюдения складывается из интенсивности обоих источников E21 и E22 и дополнительного фактора, который можно назвать интерференционным членом:

2E1E2 cos(?2 -??1).

В зависимости от разности фаз??2 -??1 колебаний источников он может быть положительным, отрицательным или равным нулю. При этом предполагается, что ?2 -??1 не зависит от времени, а только от пространственных координат. Источники, удовлетворяющие этому условию, называются когерентными. Рассмотрим случай, когда два когерентных источника с равными амплитудами и с относительной разностью фаз ? расположены на расстоянии d друг от друга (рис. 1). Какова будет результирующая интенсивность света в точке М, направление на которую составляет угол ? c нормалью к лини, соединяющей источники?

Разность расстояний от М до осцилляторов (или разность хода) равна d sin ?. Разность фаз, обусловленная  разностью хода, равна числу длин волн, укладывающихся на отрезке d sin ?, умноженному на 2?: (2?/?)d sin ?. Полная разность двух волн в точке наблюдения равна

?? = ?2 -??1 = a + (2?/?)d sin ?,

где ? - задняя разность фаз между источниками. Положим ? = 0. Очевидно, что если

?? = 2?m,

где m - любое целое  число, то в точке M наблюдения результирующая интенсивность E2R = 4E2 максимальна. Иными словами, происходит усиление света. Условие максимума:

(2?/?)d sin ? = 2?m ? d sin ? = m?,

m = 0,1,2,3,... (3)

Если ?? = (m + 1/2)?, то возникает  минимум интенсивности - происходит ослабление света. Условие минимума:

(2?/?)d sin ? = (m + 1/2)??? d sin ? = (m + 1/2)?,

m = 0,1,2,... (4)

Следовательно, для  того, чтобы в некоторой точке  наложения двух когерентных световых волн наблюдался максимум, т. е. усиление волн, на протяжении разности хода должно укладываться целое число длин волн; для того, чтобы наблюдался минимум, разность хода должна вмещать нечетное число полуволн.

В общем случае световые лучи от разных источников могут двигаться  в средах с различными показателями преломления n1 и n2. Поскольку скорость света в среде уменьшается: ? = c/n, где c - скорость света в вакууме, то уменьшается и длина волны:

? = ?T =(c/n)T = ?0/n,

где T - период колебаний, ?0 - длина волны в воздухе (или в вакууме).

Поэтому на одном и  том же расстоянии в веществе укладывается в n раз больше число волн, чем в вакууме. Поэтому для разности фаз важна не сама по себе геометрическая разность путей интерферирующих лучей, а величина n ' l, где l - геометрический путь. Эта величина называется оптической длиной пути, и она характеризует число длин волн, укладывающихся на геометрическом пути светового луча в данной среде с показателем преломления n. Разность ? оптических длин путей двух лучей называется оптической разностью хода:

? = n2l2 - n1l1,

где l1, l2 - геометрические пути, проходящие лучами в средах с показателями преломления n1 и n2 соответственно.

Общее условие максимумов и минимумов остается прежним:

? = m?0 - условие максимума;

? = (m + 1/2)?0 - условие минимума,

m = 0,1,2,...

2)Интерференционная  картина

Интерференционная картина наложения волн двух монохроматических источников представляет собой систему чередующихся светлых и темных полос. Если оба источника испускают белый (немонохроматический) свет, то интерференционная картина будет окрашенной, т. е. согласно (3), каждой длине волны будет соответствовать свой угол ?? при котором наблюдается максимум, т. е. свое место на экране.

3)Стационарная  интерференция света

Стационарная И. с. возникает при наличии пост. разности фаз (или определ. корреляции фаз) налагающихся волн. До появления лазеров когерентные  световые пучки могли быть получены только путём разделения и последоват. сведения лучей, исходящих из одного и того же источника.

4)Опыт  Юнга

Требование когерентности  налагает ограничения на угл. размеры  источника и на ширину спектра  излучения. Так, напр., в классич. опыте  Юнга, в к-ром малый источник с  линейным размером излучающей поверхности S освещает две узкие щели (рис. 1), когерентность обеспечивается условием:

S<?R/d,

где ? - ср. длина волны  света, R - расстояние от источника до экрана со щелями, d - расстояние между  щелями. Когерентность также зависит  от разности хода ? интерферирующих  лучей, к-рая, будучи выраженной в длинах световых волн, наз. порядком интерференции. С ростом d когерентность, а вместе с ней и контраст и. к. падает тем быстрее, чем шире спектр ?? света. Макс разность хода, при которой и. к. ещё видна, имеет порядок (??)-1. В белом свете наблюдается и. к. самых низких порядков (1 - 2-го), причём окрашенная, поскольку положение максимумов и минимумов интенсивности света на и. к. зависит от ?. Для узких спектр. линий порядок И. с. может доходить до 105 - 106, что соответствует разности хода в неск. см. Для наиболее монохроматических лазерных источников допустимая разность хода измеряется тысячами км.

Рис. 2. Схема опыта  Юнга. Справа сплошной линией представлена зависимость интенсивности на экране от координаты, нормальной щелям; пунктиром  показана освещённость экрана при поочерёдном закрывании щелей.

Ограничения, связанные  с когерентностью, могут быть понятны  из рассмотрения наложения и. к. от отдельных  точек реального источника. При  слишком больших размерах источника  суммарная и. к. оказывается смазанной.

5)Виды  интерференции света.

Различают двухлучевую  и многолучевую И. с. В первом случае свет в каждую точку и. к. приходит от общего источника по двум путям, как на рис. 2, при этом распределение  интенсивности на и. к. явл. гармонич. ф-цией (?cos2 ?????).

Информация о работе Поляризация света