Автор: Пользователь скрыл имя, 18 Ноября 2012 в 15:58, контрольная работа
Естествознание — совокупность наук о природе. Наука — сфера человеческой деятельности, функция которой состоит в выработке и систематизации объективных знаний о действительности. Непосредственная цель науки — описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет ее изучения на основе открываемых ею законов.
Можно сказать, что у естествознания есть ближайшая, или непосредственная, цель — это познание законов природы, а значит, и истины, и конечная цель — содействие практическому использованию этих законов. Таким образом, цели естествознания совпадают с целями самой человеческой деятельности.
Введение 3
1. Планетарная модель строения атома. 5
2. Корпускулярно-волновой дуализм микрочастиц. 12
Заключение. 16
Список использованной литературы. 18
Модель Резерфорда—Бора
— первая квантовая модель строения
атома. Объединив в себе результаты,
полученные при исследованиях радиоактивно
Таким образом, открытия Резерфорда и Бора являются фундаментальными и имеют огромное значение для современной физики и для всего человечества. История науки учит, что всякий раз, когда человечество овладевает очередной ступенькой лестницы, ведущей в глубь вещества, это приводит к открытию нового, еще более мощного вида энергии. Горение и взрыв связаны с перестройкой молекул. Внутриатомные процессы сопровождаются выделением в миллионы раз большей энергии. Еще большее выделение энергии происходит на уровне элементарных частиц. А что будет на следующих ступенях? Открытия Резерфорда и Бора доказали, что атом не есть неделимая частица, и дают возможность современной физике ответить на этот вопрос.
Классическое представление о планетарной модели атома и орбитах электронов было заменено волновой механикой и квантовой теорией элементарных процессов.
В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона).
Таким образом, частицы неотделимы от создаваемых ими полей, и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболее важных проявлений единства прерывности и непрерывности в структуре материи.
Для характеристики
прерывного и непрерывного в структуре
материи следует также
В 1924 г. произошло одно из величайших событий в истории физики: французский физик Л. де Бройль выдвинул идею о волновых свойствах материи. В своей работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.
Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам. Частица с энергией E и импульсом, абсолютная величина которого равна p, может быть сопоставлена с волной, дебройлевская длина волны которой
Согласно гипотезе де Бройля, условие квантования орбит в атоме водорода mvr = nh/(2 p ) при разных n означает, что (в простейшем случае) на длине окружности орбиты укладывается целое число дебройлевских волн. В этом случае атом водорода находится в стационарном состоянии с определенной энергией.
Если гипотеза де Бройля верна, то частицы вещества должны при определенных условиях проявлять свойства, характерные только для волн, например, демонстрировать интерференцию и дифракцию на препятствии.
Ввиду достаточно большой величины импульса электрона в атоме, соответствующая длина волны де Бройля для электронов очень мала. Так, для электрона на первой боровской орбите l = 0,4 нм, т.е. порядка величины расстояния между атомами в кристаллической решетке. Волновые свойства электрона, если они действительно есть, могут наблюдаться только в случае, когда размеры препятствий сравнимы с длиной волны.
В то же время для макроскопического тела (допустим, теннисного мяча, летящего со скоростью 25 м/с) длина волны де Бройля ничтожно мала, ~ 10 -34 м, что на 24 порядка меньше размера атома! Таким образом, волновые свойства макроскопических тел наблюдаться не могут.
Однако гипотеза де Бройля
нуждалась в опытном
Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле. Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов l = h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие. Вывод: при определенных условиях электрон и другие микрочастицы проявляют волновые свойства.
Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.
Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.
В науке и технике широко используются корпускулярно – волновые свойства микрочастиц.
Фотоэффект нашел широкое применение в телевидении, на производстве для счета деталей, их сортировки. В промышленной автоматике. В последнее время широко стали использовать фотоэлементы, главная задача которых в преобразовании падающего на них излучение в электрический ток. Фотоэлементы используют как элементы питания бытовой техники, космический аппаратов (спутников).
Формула де Бройля применима к любым частицам, и простым и сложным. Однако дифракционные явления, следовательно, волновые свойства частиц, можно заметить далеко не всегда. Это происходят в силу того, что длина волны де Бройля обратно пропорциональна массе частиц.
Если для электрона с энергией в 1 эв получается сравнительно очень большая величина λ=12,3А, то для протона той же энергии она составляет уже λ = 0,28А, а для молекулы кислорода при комнатной температуре λ = 0,14А. Кроме малости длины волны, исследования дифракции атомов и молекул затрудняются тем, что атомы и молекулы неспособны проникать в толщу кристалла и поэтому могут дать лишь дифракцию от поверхностей решетки кристалла. Трудно также получить достаточно монохроматический атомный или молекулярный пучок. В настоящее время проводят исследование структуры вещества с помощью дифракции нейтронов - "нейтронографии". Дифракция нейтронов позволяет исследовать упорядоченные структуры сплавов типа FеСо, FeMn, у которых близость атомных номеров не позволяет различать методами дифракции рентгеновских лучей или электронов атомы различных типов. Нейтроны рассеиваются ядрами этих атомов различно, и установить их взаимное расположение оказалось возможным методом нейтронографии. Любопытно, что установить структуру кристалла льда – определить расположение в нем атомов кислорода и водорода – удалось лишь методом нейтронографии.
Что касается макроскопических частиц материи, то их дифракцию наблюдать невозможно. Например, для пылинки массой 10-12 грамм волна де Бройля имеет величину порядка 10-17м. При такой длине волны невозможно реализовать условия, с помощью которых можно было бы наблюдать дифракцию, т. е. макроскопические частицы проявляют явно только одну сторону своей природы – корпускулярную.
Таким образом, новая теория, трактующая материальные частицы как объекты двойственной корпускулярно-волновой природы, не отбрасывает старых корпускулярных представлений о макроскопических частицах материи, но, обосновывая эти представления с новой точки зрения, одновременно дает и пределы их применимости в новых условиях.
В заключении хочется отметить, что открытие планетарной модели строения атома — важнейший этап становления современной физики, наложивший отпечаток на все ее дальнейшее развитие. В процессе создания количественной теории строения атома, позволившей объяснить атомные спектры, были открыты новые законы движения микрочастиц—законы квантовой механики. Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию а- частиц при прохождении через тонкие слои вещества. Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева. Планетарная модель атома, предложенная Резерфордом, несомненно, явилась крупным шагом в развитии знаний о строении атома.
Теория Бора позволила разрешить очень важный вопрос о расположении электронов в атомах различных элементов и установить зависимость свойств элементов от строения электронных оболочек их атомов. В настоящее время разработаны схемы строения атомов всех химических элементов. Однако, иметь ввиду, что все эти схемы это лишь более или менее достоверная гипотеза, позволяющая объяснить многие физические и химические свойства элементов. Теория Бора оказала огромные услуги физике и химии, подойдя, с одной стороны, к раскрытию законов спектроскопии и объяснению механизма лучеиспускания, а с другой - к выяснению структуры отдельных атомов и установлению связи между ними. Однако оставалось еще много явлений в этой области, объяснить которые теория Бора не могла.
Корпускулярно-волновой дуализм, заключается в том, что любые микрочастицы материи (фотоны, электроны, протоны, атомы и др.) обладают свойствами и частиц (корпускул), и волн. В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс, приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона).
Таким
образом, частицы неотделимы
Информация о работе Планетарная модель атома. Корпускулярно-волновой дуализм микрочастиц