Автор: Пользователь скрыл имя, 31 Августа 2011 в 16:51, отчет по практике
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
Введение.
Первый опыт передачи электроэнергии на расстояние. . . . . . . . . . . . . . . . . . . . . . . . . 4
Передача электроэнергии на расстояния и ее потребители. . . . . . . . . . . . . . . . . . . . . 7
Трансформаторы и их значение и классификация. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Силовые трансформаторы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Классификация трансформаторов напряжения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Классификация трансформаторов тока. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Технология передачи и распределение электроэнергии. . . . . . . . . . . . . . . . . . . . . . . .15
Вывод. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
министерство образования российской федерации
государственное образовательное учреждение высшего профессионального
ижевский государственный технический
университет
По производственной практике
Для
специальности 1813000
«Электрооборудование
и электрохозяйство
промышленных предприятий,
учреждений и организаций»
План:
Введение.
Рождение энергетики
произошло несколько миллионов лет тому
назад, когда люди научились использовать
огонь. Огонь давал им тепло и свет, был
источником вдохновения и оптимизма, оружием
против врагов и диких зверей, лечебным
средством, помощником в земледелии, консервантом
продуктов, технологическим средством
и т.д.
Прекрасный миф о Прометее, даровавшем
людям огонь, появился в Древней Греции
значительно позже того, как во многих
частях света были освоены методы довольно
изощренного обращения с огнем, его получением
и тушением, сохранением огня и рациональным
использованием топлива.
На протяжении многих лет огонь поддерживался
путем сжигания растительных энергоносителей
(древесины, кустарников, камыша, травы,
сухих водорослей и т.п.), а затем была обнаружена
возможность использовать для поддержания
огня ископаемые вещества: каменный уголь,
нефть,
сланцы,торф.
На сегодняшний день
энергия остается главной составляющей
жизни человека. Она дает возможность
создавать различные материалы, является
одним из главных факторов при разработке
новых технологий. Попросту говоря, без
освоения различных видов энергии человек
не способен полноценно существовать.
|
При передаче электроэнергии на большое расстояние целесообразно использовать высокие напряжения и небольшие силы токов. Для наиболее выгодной транспортировки электроэнергии и применяют трансформаторы: сначала для повышения напряжения с клемм генераторов электростанций (повышающие трансформаторы), перед транспортировкой электроэнергии, а затем для понижения напряжения в линии электропередач (понижающие трансформаторы) до приемлемого для энергопотребителей уровня.
Трансформатор - представляет собой статический электромагнитный аппарат с двумя ( или больше ) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.
При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на ее устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшится, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.
Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11—20 кВ; в отдельных случаях применяют напряжение 30—35 кВ. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономичной передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи ( до 750 кВ и более ) осуществляют повышающими трансформаторами.
Приемники электрической энергии ( лампы накаливания, электродвигатели и т. д. ) из соображений безопасности рассчитывают на более низкое напряжение ( 110-380 В ). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при котором происходит передача энергии, не может быть непосредственно использовано для питания приемников и подводится к ним через понижающие трансформаторы.
Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются неодновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.
Преобразование энергии в трансформаторе осуществляется переменным магнитным полем с использованием магнитопровода.
Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного — понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие — для ее распределения между потребителями.
В зависимости от назначения различают
силовые трансформаторы, измерительные
трансформаторы напряжения и трансформаторы
тока.
Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей. В зависимости от назначения они могут быть повышающими или понижающими. В распределительных сетях применяют, как правило, трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в напряжение 0,4 кВ.
Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях.Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений.
Трансформаторы напряжения используются как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализаций и релейной защиты линий электропередачи от замыкания на землю.
В ряде случаев трансформаторы напряжения могут быть использованы как маломощные понижающие силовые трансформаторы или как повышающие испытательные трансформаторы (для испытания изоляции электрических аппаратов).
Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.
Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.
Трансформаторы напряжения
различаются:
а) по числу фаз — однофазные и трехфазные;
б) по числу обмоток — двухобмоточные и трехобмоточные;
в) по классу точности, т. е. по допускаемым значениям погрешностей;
г) по способу охлаждения — трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);
д) по роду установки — для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ)
Для напряжений до 6 кВ трансформаторы напряжения изготовляют сухими, т. е. с естественным воздушным охлаждением. Для напряжений выше 6 кВ применяют масляные трансформаторы напряжения.
Трансформаторы внутренней установки предназначены для работы при температуре окружающего воздуха от -40 до + 45°С с относительной влажностью до 80 %
В однофазных трансформаторах напряжения
на 6 к 10 кВ преимущественно применяеться
литая изоляция. Трансформаторы с литой
изоляцией полностью или частично (одни
обмотки) залиты изоляционной массой (эпоксидной
смолой). Такие трансформаторы, предназначенные
для внутренней установки, выгодно отличаются
от масляных: имеют меньшие массу и габаритные
размеры и почти не требуют ухода в эксплуатации.
Трехфазные двухобмоточные
трансформаторы напряжения имеют обычные
трехстержневые магнитопроводы, а трехобмоточные
— однофазные броневые. Трехфазный
трехобмоточный трансформатор п
В масляных трансформаторах основной изолирующей и охлаждающей средой является трансформаторное масло.
Информация о работе Отчет по производственной практике на трансформаторе