Оптоволоконная связь

Автор: Пользователь скрыл имя, 24 Февраля 2012 в 09:15, курсовая работа

Описание работы

С начала развития компьютерной техники прошло немного немало шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”

Содержание

Введение
Волоконно-оптические линии связи
1.1 Физические особенности
1.2. Технические особенности
1.3. Основные составляющие элементы оптоволокна
1.4. Преимущества ВОЛС
геометрическая оптика и ее свойства
Волновая оптика.
Одноволоконные оптические системы передачи
Прием и передача сигналов в оптическом волокне (в волоконных световодах)
Заключение
Список использовано й литературы

Работа содержит 1 файл

ТОПТ.docx

— 90.79 Кб (Скачать)

Содержание

Введение

  1. Волоконно-оптические линии связи

1.1 Физические особенности

1.2. Технические особенности

1.3. Основные составляющие элементы оптоволокна

1.4. Преимущества  ВОЛС

  1. геометрическая оптика и ее свойства
  2. Волновая оптика.
    1. Одноволоконные оптические системы передачи
  3. Прием и передача сигналов в оптическом волокне (в волоконных световодах)

Заключение

Список использовано й литературы

 

 

 

 

 

 

 

 

 

Введение.

С начала развития компьютерной техники прошло немного  немало шестьдесят лет. За это время  мы получили такие скорости вычислений, такие скорости передачи данных, о  которых шестьдесят лет тому назад  нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги  К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или  управление и связь в животном и машине ”. Они и определили новый  вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и  на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла  программа MS - DOS, а в 1990 - Windows-3.0, и  далее пошло стремительное совершенствование  “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между  компьютером и человеком, тотальное  проникновение компьютерных технологий в бытовую сферу. 1986 год - рождение Интернета, глобальной сети, охватившей практически все страны мира, поставляющей каждому пользователю текущую информацию. Получив настолько быструю обработку  данных, люди пришли к выводу, что  можно перестать терять время  и деньги, также на передачу этих данных, а также увеличить скорость доступа, и скорость передачу данных. Это стало возможным благодаря  использованию новых видов связи, таких как оптическое волокно, пришедших  на замену банальным алюминиевым и медным проводам.           Тема об оптоволоконной линии связи, является актуальной на данный момент времени, так как число людей на планете растет, и потребности в улучшение жизни то же увеличиваются. Ещё с древних времён человек совершенствуется: улучшает свои знания, стремится улучшить жизнь, создавая и моделируя предметы быта. И сейчас многие фирмы создают телевизоры, телефоны, магнитофоны, компьютера и многое другое, то есть - бытовую технику, которая упрощают жизнь человека. Но для внедрения этих новых технологий нужно изменять или улучшать старое. В пример этому можно привести наши линии связи на коаксиальном (медном) кабеле, про которые уже было упомянуто выше. Их скорость мала, даже для передачи видеоинформации. А волоконная оптика как раз то, что нам нужно - её скоростью передачи информации очень велика. Плюс, низкие потери при передаче сигнала позволяет прокладывать значительные по дальности участки кабеля без установки дополнительного оборудования. Оптоволокно имеет хорошую помехозащищенность, легкость прокладки и долгие сроки работы кабеля практически в любых условиях. И, кроме того, оптоволокно не имеет смысла воровать с целью сдачи на металлолом. В настоящее время оптоволокно находит свое применение преимущественно в теле - и интернет - коммуникациях. Но считается, что сегодняшнее использование оптоволокна лишь вершина айсберга его применения.

 

 

 

 

 

 

 

 

 

 

 

 

  1. Волоконно-оптические линии связи.

Волоконная  оптика  - это раздел оптики, в  котором рассматривается передача света и изображения по светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон.            Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".     Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления.           В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть, сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).      В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).

 

1.1 Физические особенности

Широкополосность оптических сигналов, обусловленная чрезвычайно высокой несущей частотой. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1.1 Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.         Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.             Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.    Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена большим количеством сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга. Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

 

    1. Технические особенности 

Оптическое  волокно представляет собой диэлектрический  волновод, изготовленный из кварцевого стекла. Он имеет световедущую сердцевину с показателем преломления света n1, окруженную оболочкой с показателем  преломления n2, причем n1>n2. Попадая  в световедущую сердцевину, свет распространяется в ней за счет эффекта полного  внутреннего отражения. Этот эффект имеет место при падении луча света на границу раздела двух сред из среды с большим показателем  преломления n1 в среду с меньшим  показателем n2, и наблюдается только до определенных значений угла величина которого определяется различиями n1 и n2. Обычно свет вводится в оптоволокно  через торец. Предельная величина угла падения луча света на торец оптоволокна  связана с критическим углом  соотношением sin am = n1 cos qкр = (n12 - n22)1/2 = (2n · Dn)1/2, где n = (n1 + n2)/2, а Dn = n1 - n2. Величина NA = sin am = (2n · Dn)1/2 называется числовой апертурой оптоволокна и определяет способность оптоволокна собирать и передавать свет. Луч света, введенный в оптоволокно под углом меньшим m, будет распространяться по всей длине оптоволокна. Такой луч называется ведомой модой или просто модой.         При подборе компонентов для оптоволоконных систем учитываются 2 параметра оптоволокна, влияющие на эффективность трансляции: ширина полосы пропускания и затухание. Ширина полосы — это параметр пропускной способности волокна. Чем больше ширина полосы, тем больше информационная емкость. Пропускная способность характеризуется соотношением: частота/расстояние (МГц/км). Например, волокно 200 МГц/км способно передавать данные в полосе 200 МГц на расстояние до 1 км и в полосе 100 МГц на расстояние до 2 км. Затухание. В дополнение к физическим изменениям импульсов света, возникающих из-за ограниченности полосы пропускания, также имеет место снижение уровня оптической мощности по мере прохождения импульсов по волокну. Такого рода потери оптической мощности или затухание измеряется в децибелах на километр (дБ/км) на указанной длине волны.

 

    1. Основные составляющие элементы оптоволокна

Строение оптоволокна

- стержень: зона прохождения  света через волокно (стекло  или пластик). Чем больше диаметр  стержня, тем больший пучок  светового излучения передается  по волокну.

- оболочка: обеспечивает  достаточно низкий показатель  преломления на поверхности стержня,  чтобы вызвать эффект полного  внутреннего отражения в сердечнике  для передачи световых волн  через волокно.

- покрытие: представляет  собой многослойную пластмассовую  оболочку, предназначенную для защиты  волокна от ударов и других  внешних воздействий. Такие буферные  покрытия имеют толщину от 250 до 900 мкм.

 

1.4. Преимущества ВОЛС

Передача  информации по ВОЛС имеет целый ряд  достоинств перед передачей по медному  кабелю. Стремительное внедрение  в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.             Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации. Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.        Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.       Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.            Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.      Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.           Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.        Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.      Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.        Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.    Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

 

  1. Геометрическая оптика и ее свойства.   

   Геометрическая оптика оставляет в стороне вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде. Её задача - математически исследовать ход световых лучей в среде с известной зависимостью преломления показателя n от координат либо, напротив, найти оптические свойства и форму прозрачных и отражающих сред, при которых лучи проходят по заданному пути. Методы геометрической Оптики позволяют изучить условия формирования оптического изображения объекта как совокупности изображений отд. его точек и объяснить многие явления, связанные с прохождением оптического излучения в различных средах (например, искривление лучей в земной атмосфере вследствие непостоянства ее показателя преломления, образование миражей, радуг и т.п.). Наибольшее значение геометрическая Оптика имеет для расчёта и конструирования оптических приборов - от очковых линз до сложных объективов и огромных астрономических инструментов. Благодаря развитию и применению вычислительной математики методы таких расчётов достигли высокого совершенства, и сформировалось отдельное направление получившее название вычислительной Оптики.   Также геометрической оптикой называется раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.

Основные законы:

1.                Закон о прямолинейном распространении света.

Свет в  однородной среде распространяется прямолинейно. Прямолинейностью распространения  света объясняется образование тени, то есть место, куда не проникает световая энергия. От источников малых размеров образуется резко очерченная тень, а больших размеров создают тени и полутени, в зависимости от величины источника и расстояния между телом и источником.

2.                Закон отражения. Угол падения  равен углу отражения.

Падающий  луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости

Волоконная оптика (fiber optics) - это раздел оптики, в котором рассматривается передача света и изображения по светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон.

3.                Закон преломления.

На границе  раздела двух сред свет меняет направление  своего распространения. Часть световой энергии возвращается в первую среду, то есть происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред также меняя при этом, как правило, направление распространения. Это явление называется преломлением света.

Информация о работе Оптоволоконная связь