Автор: Пользователь скрыл имя, 06 Мая 2012 в 19:20, курсовая работа
Нанотехнология и, в особенности, молекулярная технология — новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.
Введение …………………………………………………………………………..3
1. Понятие и развитие нанотехнологий …………………………………………4
1.1. Понятие нанотехнологий …………………………………………………4
1.2. Нанотехнология как научно-техническое направление ………………..6
1.3 Современный уровень развития нанотехнологий ……………………….8
Глава 2. Использование нанотехнологий в машиностроении …………………9
2.1. Значение применения нанотехнологий в машиностроении ………………9
2.2. Технологические особенности применения нанотехнологий в машиностроении (на примере автомобильной промышленности) …………………..13
2.3. Ключевые проблемы развития нанотехнологий в России ……………...20
Заключение ………………………………………………………………………26
Литература ………………………………………………………………………29
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Глазовский
инженерно – экономический
Государственного образовательного учреждения
Высшего профессионального образования
«Ижевский государственный технический университет»
Кафедра
«Естественнонаучные и гуманитарные дисциплины»
По учебной дисциплине «ФИЗИКА»
На
тему: «Нанотехнологии»
Выполнил студент
2 курса, гр. ________ С.А. Маслеников
(подпись)
(оценка, подпись)
Введение
…………………………………………………………………………..
1. Понятие и развитие нанотехнологий …………………………………………4
1.1. Понятие нанотехнологий …………………………………………………4
1.2. Нанотехнология как научно-техническое направление ………………..6
1.3 Современный уровень развития нанотехнологий ……………………….8
Глава 2. Использование нанотехнологий в машиностроении …………………9
2.1. Значение применения нанотехнологий в машиностроении ………………9
2.2. Технологические
особенности применения
2.3. Ключевые проблемы развития нанотехнологий в России ……………...20
Заключение ………………………………………………………………………26
Литература
………………………………………………………………………29
Введение
За последние несколько лет короткое слово с большим потенциалом - «нано» быстро вошло в мировое сознание. Существует множество слухов и ошибочных мнений относительно нанотехнологии. «Нано»- это не только крошечные роботы, которые могут (или не могут) завоевать мир. По сути, это огромный шаг в науке.
Нанотехнология — область прикладной науки и техники, имеющая дело с объектами размером менее 100 нанометров (1 нанометр равен 10−9 метра). Нанотехнология качественно отличается от традиционных инженерных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.
Нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.
Нанотехнология и, в особенности, молекулярная технология — новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.
1. Понятие и развитие нанотехнологий
1.1. Понятие нанотехнологий
Английский
термин «Nanotechnology» был
Как следует
из названия, номинально наномир представлен
объектами и структурами, характерные
размеры R которых измеряются нанометрами
(1нм = 10–9м = 106 мм = 10–3
мкм). Сама десятичная приставка «нано-»
происходит от греческого слова νανοσ
– «карлик» и означает одну миллиардную
часть чего-либо. Реально наиболее ярко
специфика нанообъектов проявляется в
области характерных размеров R от
атомных
(~ 0,1 нм) до нескольких десятков нм. В ней
все свойства материалов и изделий (физико-механические,
тепловые, электрические, магнитные, оптические,
химические, каталитические и др.) могут
радикально отличаться от макроскопических.
Существует более десятка причин специфичного
поведения и особых свойств наноструктурных
материалов и нанообъектов. Причем, их
свойства существенно зависят от размеров
морфологических единиц и могут быть изменены
в необходимую сторону путем добавления
и удаления атомов (молекул) одного сорта.
Нанотехнология - совокупность методов
и приемов, обеспечивающих возможность
контролируемым образом создавать и модифицировать
объекты, включающие компоненты с размерами
менее 100 нм, имеющие принципиально новые
качества и позволяющие осуществлять
их интеграцию в полноценно функционирующие
системы большего масштаба. Данная технология
подразумевает умение работать с такими
объектами и создавать из них более крупные
структуры, обладающие принципиально
новой молекулярной организацией. Наноструктуры,
построенные «из первых принципов», с
использованием атомномолекулярных элементов,
представляют собой мельчайшие объекты,
которые могут быть созданы искусственным
путем. Они характеризуются новыми физическими,
химическими и биологическими свойствами
и связанными с ними явлениями. В связи
с этим возникли понятия нанонауки, нанотехнологии
и наноинженериии (нанонаука занимается
фундаментальными исследованиями свойств
наноматериалов и явлений в нанометровом
масштабе, нанотехнология – созданием
наноструктур, наноинженерия – поиском
эффективных методов их использования)
(см. рис. 1).
Рисунок 1. Научные основы и объекты нанонауки и нанотехнологии
Наноматериалы - материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;
Наносистемная техника - полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.
1.2. Нанотехнология как научно-техническое направление
Фундаментальные исследования явлений, происходящих в структурах с размерами менее 100 нм, дали начало развитию новой области знаний, которая, очевидно, в обозримом будущем внесет революционные изменения в технологии XXI века. Подобным структурам соответствует такое состояние вещества, когда в их поведении проявляются и доминируют принципиально новые явления, в числе которых квантовые эффекты, статистические временные вариации свойств и их масштабирование в зависимости от размеров структур, преобладающее влияние поверхности, отсутствие дефектов в объеме монокристаллов, значительная энергонасыщенность, определяющая высокую активность в химических реакциях, процессах сорбции, спекания, горения и т.п. Эти явления наделяют наноразмерные частицы и структуры уникальными механическими, электрическими, магнитными, оптическими, химическими и другими свойствами, которые открывают дверь в принципиально новую область манипулирования материей с применениями, трудно представимыми в обычной ситуации.
Отличие свойств малых частиц от свойств массивного материала известно ученым давно и используется в различных областях техники. Примерами наноразмерных структур могут служить широко применяемые аэрозоли, красящие пигменты, цветные стекла, окрашенные коллоидными частицами металлов. Впечатляющие примеры связаны с биологией, где живая природа демонстрирует нам наноструктуры на уровне клеточного ядра. В этом смысле собственно нанотехнология, как научное направление, не является чем-то новым. Качественная характеристика нанотехнологии заключается в практическом использовании нового уровня знаний о физико-химических свойствах материи. В этом одновременно и исключительность нанотехнологии – новый уровень знаний предполагает выработку концептуальных изменений в направлениях развития техники, медицины, сельскохозяйственного производства, а также изменений в экологической, социальной и военной сферах.
Важной отличительной особенностью нанометрового масштаба является также способность молекул самоорганизовываться в структуры различного функционального назначения, а также порождать структуры, себе подобные (эффект саморепликации). Методами так называемого механосинтеза реализуются новые, не имеющие аналогов, молекулярные соединения. Проведены эксперименты, в которых тысячи и десятки тысяч молекул соединяются в кристаллы, обладающие изначально заданными свойствами, которые не встречаются у природных материалов.
Использование перечисленных выше свойств в практических приложениях и составляет суть нанотехнологии. На ее основе уже реализованы образцы наноструктурированных сверхтвердых, сверхлегких, коррозионно- и износостойких материалов и покрытий, катализаторов с высокоразвитой поверхностью, нанопористых мембран для систем тонкой очистки жидкостей, сверхскоростных приборов наноэлектроники.
Вывод: нанотехнологии - это принципиально новый, надотраслевой приоритет, он един для всех отраслей науки и промышленности. Фактически переход к нанотехнологиям знаменует переход цивилизации в ближайшие 10-20 лет к принципиально новому экономическому укладу.
Когда речь идет о развитии нанотехнологий, имеются в виду три направления:
· изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;
· разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;
· непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.
Сегодня львиная доля производственных затрат человека идут, как это ни парадоксально, на производство отходов и загрязнение окружающей среды. Если же мы будем целенаправленно создавать необходимые нам материальные объекты, конструируя их из атомов и молекул, с помощью нанотехнологий, это приведет радикальному снижению материальных и энергетических затрат общества в целом.
Таким образом, нанотехнологии - это, во-первых, технологии атомарного конструирования, во-вторых, - принципиальный вызов существующей системе организации научных исследований, и, в-третьих, - философское понятие, возвращающее нас к целостному восприятию мира на новом уровне знаний.
1.3. Современный уровень развития нанотехнологий
В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов.
Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.
2. Использование нанотехнологий в машиностроении
2.1. Значение применения нанотехнологий для машиностроения
Проблему катастроф различных физических объектов и на земле, и в воде, и в воздухе, и в космосе, в основном, связанных с качеством и надежностью машин, нельзя решить без учета эволюционного развития структуры материала на всех этапах его жизненного цикла. Понимание термина «технологический мониторинг» в контексте новой метрологии объемного наноструктурирования позволит решать задачи по обеспечению качества и повышенного ресурса оборудования, устранить необходимость завышенного коэффициента запаса прочности, что повышает конкурентоспособность[22].
Объемное
наноструктурирование имеет решающее
значение при разработке отличающихся
малым весом летательных
Например:
Реализация нанотехнологий в авиакосмической отрасли позволит:
1. Повысить прочность летательных аппаратов. Сейчас ставится задача довести возможность их совершать до 70-90 тысяч полетов, что требует повышения прочностных характеристик, которые обеспечивают новые наноматериалы.
2. Добиться «живучести» и снижения веса (которое обеспечивают в настоящее время композиты). К ним должны присоединиться наноматериалы.
3. Переходя на нанотехнологии, можно достигнуть снижения трения.