Молекулярно-кинетическая теори Основное уравнение МКТ газов. Температура

Автор: Пользователь скрыл имя, 13 Ноября 2011 в 11:22, реферат

Описание работы

Простейшей моделью, рассматриваемой молекулярно-кинетической теорией, является модель идеального газа. В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие между собой и со стенками только во время упругих столкновений. Суммарный объем всех молекул предполагается малым по сравнению с объемом сосуда, в котором находится газ. Модель идеального газа достаточно хорошо описывает поведение реальных газов в широком диапазоне давлений и температур. Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, объем, температура).

Работа содержит 1 файл

Молекулярно.doc

— 195.50 Кб (Скачать)

Молекулярно-кинетическая теори

Основное  уравнение МКТ  газов. Температура

Простейшей  моделью, рассматриваемой молекулярно-кинетической теорией, является модель идеального газа. В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие между собой и со стенками только во время упругих столкновений. Суммарный объем всех молекул предполагается малым по сравнению с объемом сосуда, в котором находится газ. Модель идеального газа достаточно хорошо описывает поведение реальных газов в широком диапазоне давлений и температур. Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, объем, температура).

В результате каждого столкновения между молекулами и молекул со стенками скорости молекул  могут изменяться по модулю и по направлению; на интервалах времени  между последовательными столкновениями молекулы движутся равномерно и прямолинейно. В модели идеального газа предполагается, что все столкновения происходят по законам упругого удара, т. е. подчиняются законам механики Ньютона.

Используя модель идеального газа, вычислим давление газа на стенку сосуда. В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υскорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υскорости, параллельная стенке, остается неизменной (рис. 3.2.1).

Рисунок 3.2.1.

Упругое столкновение молекулы со стенкой

Поэтому изменение  импульса молекулы будет равно 2m0υx, где m– масса молекулы.

Выделим на стенке некоторую площадку (рис. 3.2.2). За время Δс этой площадкой столкнутся все молекулы, имеющие проекцию скорости υx, направленную в сторону стенки, и находящиеся в цилиндре с основанием площади и высотой υxΔt.

Рисунок 3.2.2.

Определение числа столкновений молекул с площадкой S

Пусть в единице  объема сосуда содержатся молекул; тогда число молекул в объеме цилиндра равно nSυxΔt. Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается. Следовательно, число ударов молекул о площадку за время Δравно   Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину 2m0υx, то полное изменение импульса всех молекул, столкнувшихся за время Δс площадкой S, равно   По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы FΔt, где – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке S. Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадкуS. Поэтому можно записать: 

Разделив  обе части на SΔt, получим: 

где – давление газа на стенку сосуда.

При выводе этого  соотношения предполагалось, что  все молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось X. На самом деле это не так.

В результате многочисленных соударений молекул  газа между собой и со стенками в сосуде, содержащем большое число  молекул, устанавливается некоторое  статистическое распределение молекул  по скоростям. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям. Распределение молекул газа по модулю скоростей называется распределением МаксвеллаДж. Максвелл в 1860 г. вывел закон распределения молекул газа по скоростям, исходя из основных положений молекулярно-кинетической теории. На рис. 3.2.3 представлены типичные кривые распределения молекул по скоростям. По оси абсцисс отложен модуль скорости, а по оси ординат – относительное число молекул, скорости которых лежат в интервале от υдо υ + Δυ. Это число равно площади выделенного на рис. 3.2.3 столбика.

Рисунок 3.2.3.

Распределение молекул по скоростям. TT1

Характерными  параметрами распределения Максвелла являются наиболее вероятная скорость υв, соответствующая максимуму кривой распределения, и среднеквадратичная скорость   где   – среднее значение квадрата скорости.

С ростом температуры  максимум кривой распределения смещается  в сторону больших скоростей, при этом υв и υквувеличиваются. 

Модель. Распределение  Максвелла

Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что все молекулы, содержащиеся в единице объема, разбиты  на группы, содержащие n1n2nи т. д. молекул с проекциями скоростей υx1, υx2, υxи т. д. соответственно. При этом   Каждая группа молекул вносит свой вклад   в давление газа. В результате соударений со стенкой молекул с различными значениями проекций υxi скоростей возникает суммарное давление 

Входящая  в это выражение сумма –  это сумма квадратов проекций υвсех молекул в единичном объеме газа. Если эту сумму разделить на n, то мы получим среднее значение   квадрата проекции   скорости молекул: 

Теперь формулу  для давления газа можно записать в виде 

 

Так как все  направления для векторов скоростей  молекул равновероятны, среднее  значение квадратов их проекций на координатные оси равны между  собой: 

Последнее равенство  вытекает из формулы: 

Формула для  среднего давления газа на стенку сосуда запишется в виде 

 

Это уравнение  устанавливает связь между давлением идеального газа, массой молекулы m0, концентрацией молекул n, средним значением квадрата скорости   и средней кинетической энергией   поступательного движения молекул. Его называют основным уравнением молекулярно-кинетической теории газов.

Таким образом, давление газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема.

В основное уравнение  молекулярно-кинетической теории газов  входит произведение концентрации молекул на среднюю кинетическую энергию   поступательного движения. Если предположить, что газ находится в сосуде неизменного объема V, то  (– число молекул в сосуде). В этом случае изменение давления Δпропорционально изменению   средней кинетической энергии.

Возникают вопросы: каким образом можно на опыте  изменять среднюю кинетическую энергию  движения молекул в сосуде неизменного  объема? Какую физическую величину нужно изменить, чтобы изменилась средняя кинетическая энергия   Опыт показывает, что такой величиной является температура.

Понятие температуры  тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.

Для измерения  температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество(например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры  должны быть откалиброваны. Для этого  их приводят в тепловой контакт с  телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками0 °С и 100 °С принимается равным 1 °С. В ряде стран (США) широко используется шкала Фаренгейта (TF), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно, 

Особое место  в физике занимают газовые термометры (рис. 3.2.4), в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (= const), а термометрической величиной – давление газа p. Опыт показывает, что давление газа (при = const) растет с ростом температуры, измеренной по шкале Цельсия.

Рисунок 3.2.4.

Газовый термометр  с постоянным объемом

Чтобы проградуировать  газовый термометр постоянного  объема, можно измерить давление при  двух значениях температуры (например, 0 °C и 100 °C), нанести точки pи p100 на график, а затем провести между ними прямую линию (рис. 3.2.5). Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления. Экстраполируя график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. На опыте получить путем охлаждения газ в состоянии с нулевым давлением невозможно, так как при очень низких температурах все газы переходят в жидкое или твердое состояние.

Рисунок 3.2.5.

Зависимость давления газа от температуры при = const

Информация о работе Молекулярно-кинетическая теори Основное уравнение МКТ газов. Температура