Методы и средства измерения давления

Автор: Пользователь скрыл имя, 14 Мая 2012 в 03:29, реферат

Описание работы

Вопросами теории измерений, средствами обеспечения их единства и способов достижения необходимой точности занимается специальная наука – метрология. В задачу метрологии входит установление единиц измерения, определение способов передачи размера единицы от эталонов до измеряемого объекта через ряд промежуточных звеньев.
Измерение давления необходимо практически в любой области нау­ки и техники как при изучении происходящих в природе физических процессов, так и для нормального функционирования технических уст­ройств и технологических процессов, созданных человеком. Давление определяет состояние веществ в природе (твердое тело, жидкость, газ).

Содержание

Содержание. 2

Введение. 3

Методы и средства измерения давления. 5

Глава 1.Методы прямых измерений давления.

1.1.Жидкостные манометры. 8
1.1.1.Основные типы, принципы их действия. 8
1.1.2.Жидкостно-поршневые манометры. 10
1.2.Поршневые манометры. 12
1.2.1.Принцип действия, основы теории. 13
1.3.Деформационные манометры. 16
1.3.1.Принципы преобразования давления деформационным
манометром. 17
1.3.2.Упругие чувствительные элементы деформационных манометров. 19
1.3.3.Индуктивные и трансформаторные электромагнитные преобразователи. 20
1.3.4.Резистивные деформационные манометры. 21
1.3.5.Перспективы развития деформационных манометров. 27

Глава 2.Методы косвенных измерений давления.

2.1.Косвенные методы, основанные на уравнении состояния
идеального газа. 28
2.2.Косвенные методы, основанные на фазовых переходах. 30
2.3.Косвенные методы, основанные на изменении физических
свойств измеряемой среды. 32

Глава 3. Датчик для измерения избыточного давления Метран-43-ДИ (Модель 3163). 34

Заключение. 37

Литература.

Работа содержит 1 файл

готова.doc

— 312.00 Кб (Скачать)

Манометры с силовой компенсацией

Все рассмотренные выше деформационные манометры основаны на методе прямого преобразования давления (см. рис. 7, а). Метод урав­новешивающего преобразования давления (см. рис. 7, б), хотя и менее распространен в технике измерения давления, но продолжает сохранять заметную роль в некоторых отраслях промышленности, в которой на­ходят применение манометры с силовым уравновешиванием двух типов: уравновешивание измеряемого давления пневматическим давлением (пневматическая силовая компенсация); уравновешивание измеряемого давления электромагнитными силами (электромагнитная силовая ком­пенсация).

При этом во время уравновешивания силы, возникающей в первич­ном ЧЭ под действием измеряемого давления, силой, развиваемой цепью обратной связи, происходит незначительное перемещение первичного ЧЭ, независимо от его жесткости, что позволяет в широких пределах варьи­ровать чувствительность измеряемой системы.

 

1.3.5. Перспективы развития деформационных манометров

 

По принципу действия деформационные манометры требуют для своей градуировки применения методов и средств, основанных на абсо­лютных методах воспроизведения давления. Повышение их точности, в принципе, ограничено точностью применяемых при градуировке жид­костных и поршневых эталонов, которая характеризуется погрешностя­ми порядка 1 • 10-5 - 5 • 10-5. Это позволило уже в настоящее время создать образцовые деформационные манометры, погрешности которых не превышают 2,5• 10-4 - 5 • 10-4 (0,025—0,05 %).

Одно из важнейших направлений развития точных деформационных манометров — разработка портативных образцовых переносных мано­метров, пригодных для контроля рабочих средств измерений на месте их эксплуатации.

Переносной манометр содержит переключатели единиц измерений и диапазонов измерений, ручной насос, регулятор объема, корректор ну­ля и штуцер для подключения измеряемого давления. Питание прибора осуществляется от батареек напряжением 12В или от внешнего источни­ка питания.

Однако основное назначение деформационных манометров состоит в удовлетворении потребностей различных отраслей промышленности в измерении давления, так как в каждой отрасли существуют свои тре­бования к условиям эксплуатации, формам представления информации, точности и надежности, необходимым габаритным размерам и массе, стоимости приборов и пр. Все это требует совершенствования различных параметров и свойств деформационных манометров, специфика которых определяется их на­значением и принципом действия.

Деформационные манометры, основанные на электрических мето­дах преобразования (индуктивные, емкостные и др.), обеспечивая доста­точно высокую точность, нуждаются в совершенствовании методов защи­ты их электрических цепей от воздействия внешних электрических и магнитных полей, особенно при необходимости размещения на расстоя­нии УЧЭ и электроники.

Дальнейшее развитие получают металлические и полупроводниковые тензорезистивные деформационные манометры.

Технология изготовления кремниевых полупроводниковых тензодатчиков в настоящее время отработана достаточно хорошо и ее совер­шенствование будет продолжаться по мере развития микроэлектроники, Однако при температуре выше 200°С полупроводниковый кремний те­ряет свою тензочувствительность, превращаясь в обычный проводник, что не допускает их применение в условиях высоких температур (внутри работающих автомобильных и реактивных двигателей, в буровых уста­новках глубокого бурения и пр.). Весьма перспективна для этих целей замена кремния на карбид кремния (карборунд). В настоящее время уже созданы транзисторы из карбида кремния на подложке из его окислов, нанесенной на металлическую мембрану. Полупроводниковые свой­ства такого тензорезистора при температуре 650°С аналогичны свойст­вам обычного кремниевого тензорезистора при температуре 20°С.

В настоящее время проводятся также разработки полупроводнико­вых тензорезисторов, предназначенных для работы в условиях низких температур (сверхпроводящие магнитные системы термоядерных уста­новок, криогенные накопители энергии, реактивные двигатели на сжи­женном водороде и пр.) в диапазоне от 2 до 100К (от -271 до -173° С). В этих условиях чистые полупроводники превращаются в диэлектрики. Введение в кремний примесей позволяет сохранить тензочувствитель­ность, хотя она существенно снижается. В нашей стране разработан дат­чик такого типа.

 

Глава 2. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ

 

В отличие от методов прямых измерений давления, на которых ос­нованы рассмотренные ранее жидкостные, поршневые и деформацион­ные манометры, методы косвенных базируются на измерении физичес­ких величин (температуре, объеме), значения которых связаны с давле­нием известными физическими закономерностями, или на изменении фи­зических свойств измеряемой среды под действием давления (теплопро­водности, вязкости, электропроводности и пр.).

Косвенные методы, как правило, находят применение в тех случаях, когда прямые методы изме­рения давления трудно осуществимы, например, при измерении весьма малых давлений (вакуумные измерения) или при измерениях сверхвы­соких давлений.

 

2.1. Косвенные методы, основанные на уравнении состояния идеального газа

 

Связь между важнейшими термодинамическими параметрами газа определяется соотношением

 

pV   = const, (8)


                                                      T

 

где р — абсолютное давление газа; Т — абсолютная температура газа; V — объем, занимаемый газом.

Соотношение (8) называется объединенным газовым законом и формулируется следующим образом: при постоянной массе газа произ­ведение объема на давление, деленное на абсолютную температуру газа, есть величина, одинаковая для всех состояний этой массы газа.

Уравнение состояния для произвольной массы идеального газа (урав­нение Клайперона-Менделеева) имеет вид

                                                         

pV= m • RT, (9)

                                                              μ

                                                       

где т — масса газа; μ — масса одного киломоля газа; R — универсальная газовая постоянная.

Для упрощения процесса измерения давления один из параметров со­стояния (Т или V) сохраняется постоянным. Тогда давление однозначно определяется по результатам измерения V или Т. Например, при измере­нии изменений атмосферного давления в баронивелировании нашли при­менение газовые барометры, принцип действия которых основан на ис­пользовании уравнения состояния газа (8) при постоянной температу­ре, т. е. при постоянной массе газа и неизменной температуре давление об­ратно пропорционально занимаемому газом объему.

Принципиальная схема газового барометра конструкции Штриплинга изображена на рис. 8. Прибор состоит из двух камер, одна из кото­рых 2 может быть сообщена с атмосферным давлением, а другая 3 зам­кнута. Обе камеры связаны между собой капилляром, в середине кото­рого находится капля масла 1, выполняющая роль указателя нуля. При равенстве давлений в камерах капля устанавливается на нулевой отмет­ке.

 

Рис. 8. Принципиальная схема га­зового барометра

 

Равенство давлений достигается изменением объема камеры 3 посред­ством перемещения сильфона 4 с помощью винта и червячной передачи с отсчетом числа оборотов червяка по цифровому счетчику. При погреш­ности термостатирования 0,001°С изменения давления фиксируются с погрешностью менее 0,5 Па.

В дифференциальном газовом баро­метре системы Д.И. Менделеева (рис. 9) изменение атмосферного дав­ления определяется комбинированным методом. Барометр состоит из замкнуто­го сосуда 1, соединенного с давлением ок­ружающего воздуха при помощи V-образного жидкостного манометра 2.

 

Рис. 9. Дифференциальный  га­зовый барометр

 

Барометр основан на уравновешива­нии изменений атмосферного давления как столбом жидкости, так и сжатием (расширением) газа в замкнутом сосуде по закону Бойля-Мариотта. Как и ранее, необходимо тщательное термостатирование со­суда 1 или введение температурной поправки, равной 0,37 % на 1°С.

Следует отметить, что рассмотренные выше газовые барометры в связи с появлением высокоточных деформационных барометров анало­гичного назначения в настоящее время практически не применяются. В отличие от этого в области вакуумных измерений указанный принцип на­ходит широкое применение. Компрессионные („компрессия" — сжатие) и экспансионные („экспансия" - расширение) манометры являются ос­новными средствами воспроизведения к передачи единицы давления в области вакуумных измерений в диапазоне от 10-3 до 103 Па (10-5 -10 мм рт. ст.).

 

2.2. Косвенные методы, основанные на фазовых переходах

 

Известно, что любое вещество в зависимости от давления и темпера­туры может находиться в различных агрегатных состояниях (твердой, жидкой и газообразной фазах). Типовая диаграмма состояний в коорди­натах р и Т представлена на рис. 10. Кривыми линиями изображены гра­ницы между различными фазами (кривые равновесия фаз), соответству­ющие давлениям и температурам, при которых из одной фазы в другую переходит одинаковое число молекул.

 

Рис. 10. Типовая диаграмма состояний

 

При этом кривая СК выражает зависимость от температуры давления насыщенного пара над жидкостью; кривая АС - давления насыщенного пара над твердым телом, кривая ВС - температуры плавления от давления. Например, при давлении р1 и температуре Т1, будет наблюдаться равновесие твердой 1 и газообраз­ной 2 фаз. Если при той же температуре Т1, давление понизить, то начнет­ся переход твердой фазы в газообразную. Этот процесс называется возгон­кой или сублимацией („сублимаре" — возносить). Аналогично на грани­це ВС происходит плавление твердой фазы (кристаллизация жидкой фа­зы 3), а на границе СК - кипение жидкой фазы (конденсация газообраз­ной фазы). Необходимо отметить также две особые точки. Тройная точка С, находящаяся на пересечении всех трех кривых равновесия фаз, ха­рактеризует состояние вещества, когда находятся в равновесии одновре­менно твердая, жидкая и газообразная фазы. Критическая точка К соот­ветствует критической температуре Тк и критическому давлению рк, при которых теряется всякое различие между жидкостью и ее паром, а граница между ними исчезает.

Указанные выше кривые равновесия фаз и тройная точка использу­ются в косвенных методах определения давления по результатам изме­рения температуры в равновесных точках (в области температурных измерений, наоборот, температура определяется по результатам измере­ния давления).

Диаграмма состояний дает наглядное представление о выборе того или иного фазового перехода в зависимости от определяемого давления. Кривая плавления ВС немного отклоняется от вертикали к оси абсцисс, т. е. температура плавления имеет небольшую чувствительность к давле­нию. Так, температура плавления льда изменяется на 1 К при изменении давления на 13 МПа (следует отметить, что в отличие от большинства веществ температура плавления льда понижается при повышении давле­ния - штриховая линия СВ на рис 10) , Поэтому кривые плавления ис­пользуются в косвенных методах определения высоких и сверхвысо­ких давлений. Процесс сублимации (кривая АС) происходит, как прави­ло, при низких температурах и давлениях, что позволяет его использо­вать при определении давления в области вакуумных измерений. И, на­конец, фазовый переход жидкость—пар (кривая СК) наиболее удобен для области средних давлений помимо указанного, пои выборе того или иного фазового перехода необходимо учитывать физические свой­ства применяемого вещества.

В области измерения высоких и сверхвысоких давлений его значение воспроизводится по кривой плавления ртути, полуэмпирическое уравне­ние которой получают по результатам исследований сравнением с эталон­ным поршневым манометром. Это позволяет построить непрерывную шкалу давлений, по которой градуируются средства измерений высоких и сверхвысоких давлений низшей точности.

В области средних давлений, где успешно применяются высокоточ­ные средства измерений, основанные на прямых методах, использование косвенных методов нецелесообразно. Однако представляет интерес, по­лучивший распространение в первой половине нашего века простой спо­соб измерения атмосферного давления, основанный на фазовых перехо­дах „жидкость—пар" (кривая СК на рис. 10), который легко может быть продемонстрирован в любой, даже школьной, лаборатории.

 

2.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды

 

Для определения давления находят также применение методы, ос­нованные на зависимости от давления различных физических свойств жидкостей и газов и протекающих в них процессах. При этом были использованы результаты исследований влияния давления на плотность и вязкость, диэлектрическую проницаемость, скорость распространения ультразвука, теплопроводность и другие свойства измеряемой среды.

В области высоких и средних давлений указанные методы широкого распространения не получили в связи с их относительной сложностью и трудоемкостью по сравнению с другими методами (применение манга­нинового манометра сопротивления в области высоких давлений, пря­мые методы измерений в области средних давлений).

В области вакуумных измерений указанные методы применяются практически повсеместно. Зависимость теплопроводности разреженно­го газа от давления используется в тепловых и термопарных маномет­рах; зависимость тока положительных ионов от измеряемого давле­ния — в ионизационных манометрах. Используется также зависимость от давления вязкости газа, кинетической энергии молекул, концентра­ции молекул и пр.

Наибольшее распространение в вакуумной технике (около 70 %) получили термопарные и ионизационные манометры.

Термопарный манометр (рис. 11, а) так же, как и тепловой, основан на зависимости теплопроводности разреженного газа от давления. Мано­метр содержит стеклянную или металлическую колбу 3, в которой поме­щены нагреватель 1 к впаянная в него термопара 2. Нагреватель питается от источника переменного тока, и его температура, а следовательно, и температура термопары, определяется теплоотдачей в окружающий раз­реженный газ. Чем меньше давление газа, тем меньше его теплопровод­ность и тем больше температура, а следовательно, ЭДС на выходе термо­пары, которая и является мерой измеряемого давления. Шкала прибора 4 для измерения ЭДС градуируется, как правило, в единицах давления. Данный принцип наиболее эффективен при давлениях от 0,1 до 100 Па. При давлениях, меньших 0,1 Па, все большая доля тепла передается излу­чением, а при давлениях, больших 100 Па, увеличение теплопроводности газа резко замедляется. В обоих случаях существенно уменьшается чув­ствительность прибора. Погрешность измерений составляет 10—30 %. На градуировочную характеристику существенно влияет состав газа. Поэтому для уточнения показаний термопарного манометра необходима индивидуальная градуировка.

Информация о работе Методы и средства измерения давления