Автор: Пользователь скрыл имя, 12 Марта 2012 в 12:48, доклад
Квантовая механика – теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и их системы, с физическими величинами, непосредственно измеряемыми на опыте.
Д/з № 2 по теме: «Квантовая механика».
Квантовая механика – теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и их системы, с физическими величинами, непосредственно измеряемыми на опыте.
Объектом квантовой механики являются микрочастицы (атомы, молекулы, атомные ядра, элементарные частицы).
Предметом квантовой механики является описание законов и процессов движения микрочастиц.
Основные понятия:
Главное квантовое число принимает целые положительные значения 1, 2, 3 и т.д.
1.
Любое состояние системы
2.
Предсказания квантовой
3.
Принцип суперпозиции: если в
системе могут реализовываться
состояния, описываемые
4.
Результаты экспериментов
Начало квантовой механики совпало с началом века. М. Планк в 1900 году предположил, что свет испускается неделимыми порциями энергии – квантами, и математически представил это в виде формулы E=hv, где v – частота света, а h – универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию вошли таким образом прерывистые физические величины, которые могут изменяться только скачками.
1) в 1905 г. Альберт Эйнштейн построил теорию фотоэффекта. Данная теория была построена с целью развития идей Планка. Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами. Следовательно, дискретность присуща самому свету;
2) в 1913 г. Бор применяет идею квантов по отношению к планетарной системе атомов. Данная идея Бора привела к научному парадоксу. Согласно Бору, радиус орбиты электрона постоянно уменьшался. Электрон в конце концов должен был просто «упасть» на ядро. Бор решил, что электрон испускает свет не постоянно, а лишь тогда, когда он переходит надру-гую орбиту;
3) в 1922 г. американец Комптон доказал, что рассеяние света происходит путем столкновения двух частиц;
4) эффект Комптона привел также к парадоксу. Он утверждал о корпускулярно-волновой природе света. И это было явное противоречие: эти два явления не могли смешиваться. В 1924 г. французский ученый Луи де Бройль выдвинул теорию, согласно которой каждой частице надо поставить волну, которая связана с импульсом частицы;
5) австриец Шредингер доказал гипотезу де Бройля. Шредингер придумал уравнение, которое соответствует поведению волн де Бройля. Данное уравнение получило название «уравнение Шредингера»;
6) в 1926 г. ученые-физики проводили опыты, которые экспериментально окончательно подтвердили теорию де Бройля;
7) в 1927 г. Дирак придумывает свое уравнение, которое становится главным аргументом релятивистской квантовой механики. Это уравнение описывает движение электрона во внешнем силовом поле.
Окончательно квантовая
Работы Гейзенберга были развиты другими учеными (например, Борном, Иорданом и др.). Работа немецкого физика Гейзенберга стала основой для матричной механики.
Также Гейзенберг является автором гипотезы о том, что любая физическая система никогда не может находиться в состоянии, в котором координаты ее центра инерции и импульса принимают одновременно равные значения.
Этот принцип известен в науке как «соотношение неопределенностей».
Литература: