Измерение давления

Автор: Пользователь скрыл имя, 12 Января 2011 в 15:55, реферат

Описание работы

Вопросами теории измерений, средствами обеспечения их единства и способов достижения необходимой точности занимается специальная наука – метрология. В задачу метрологии входит установление единиц измерения, определение способов передачи размера единицы от эталонов до измеряемого объекта через ряд промежуточных звеньев.

Содержание

Введение. 3

Методы и средства измерения давления. 5
Глава 1.Методы прямых измерений давления.
1.1.Жидкостные манометры. 8
1.1.1.Основные типы, принципы их действия. 8
1.1.2.Жидкостно-поршневые манометры. 10
1.2.Поршневые манометры. 12
1.2.1.Принцип действия, основы теории. 13
1.3.Деформационные манометры. 16
1.3.1.Принципы преобразования давления деформационным
манометром. 17
1.3.2.Упругие чувствительные элементы деформационных манометров. 19
1.3.3.Индуктивные и трансформаторные электромагнитные преобразователи. 20
1.3.4.Резистивные деформационные манометры. 21
1.3.5.Перспективы развития деформационных манометров. 27
Глава 2.Методы косвенных измерений давления.
2.1.Косвенные методы, основанные на уравнении состояния
идеального газа. 28
2.2.Косвенные методы, основанные на фазовых переходах. 30
2.3.Косвенные методы, основанные на изменении физических
свойств измеряемой среды. 32
Глава 3. Датчик для измерения избыточного давления Метран-43-ДИ (Модель 3163). 34

Заключение. 37
Литература. 38

Работа содержит 1 файл

готова.doc

— 312.00 Кб (Скачать)

    Помимо  классификации по основным методам  измерений и видам давления, средства измерений давления классифицируют по принципу действия, функциональному назначению, диапазону и точности измерений.

    Наиболее  существенный классификационный признак  — принцип действия средства измерения  давления, в соответствии с ним  и построено дальнейшее изложение.

    Современные   средства   измерений  давления   представляют   собой измерительные  системы, звенья которых имеют различное  функциональное назначение. Обобщенные блок-схемы манометров и измерительных  преобразователей давления приведены соответственно на рис. 1, а и б. Важнейшим   звеном любого средства измерения давления является его чувствительный элемент (ЧЭ), который воспринимает измеряемое давление и преобразует его в первичный сигнал, поступающий в измерительную цепь прибора. С помощью промежуточных преобразователей сигнал от ЧЭ преобразуется в показания манометра или регистрируется им, а в  измерительных преобразователях  (ИНД)  - в унифицированный выходкой сигнал, поступающий в системы измерения, контроля, регулирования и управления. При этом промежуточные преобразователи и вторичные  приборы   во  многих  случаях унифицированы и могут применяться  в  сочетании с ЧЭ различных типов. Поэтому принципиальные особенности манометров и ИПД зависят, в первую очередь, от типа ЧЭ [1].

    

 

    Рис. 1. Структурные блок-схемы:

    а — манометра; б — измерительного преобразователя давления; р — измеряемое давление; 1 — чувствительный элемент (первичный преобразователь) ; 2 — промежуточные преобразователи; 3 — показания; 4 — регистрация; 5 — выходной сигнал; → к системам: I — измерения и контроль; II - регистрации; III — регулирования; IV – управления 

    По  принципу действия ЧЭ средства измерения  давления можно разделить на следующие  основные группы.

    1. Средства измерения давления, основанные  на прямых абсолютных методах: поршневые манометры и ИПД, в том числе и грузопоршневые манометры, манометры с нецилиндрическим неуплотненным поршнем, колокольные, кольцевые и жидкостные манометры.

    В первых трех манометрах метод измерений  реализуется уравнением (1), основанным на определении величины давления по отношению силы к площади; в жидкостных манометрах - уравнением (2) , основанным на уравновешивании давления столбом жидкости.

    2. Средства измерения давления, основанные  на прямых относительных методах: деформационные манометры и ИПД, в том числе и с силовой компенсацией; полупроводниковые манометры и ИПД; манометры других типов, основанные на изменении физических свойств ЧЭ под действием давления.

    3. Средства измерения давления, основанные  на методах косвенных измерений: установки и приборы для определения давления по результатам измерения других физических величин; установки и приборы для определения давления по результатам измерения параметров физических свойств измеряемой среды (термопарные и ионизационные вакуумметры, ультразвуковые манометры, вязкостные вакуумметры и др.).

    Следует отметить, что абсолютные методы измерений, заложенные в поршневых и жидкостных манометрах, во многих случаях на практике не реализуются. Например, жидкостные манометры, исключая первичные эталоны, градуируются и поверяются не абсолютным, а относительным методом, путем их сличения с образцовыми средствами измерений соответствующей точности.

    Глава 1. Методы прямых измерений давления

 

    1.1. Жидкостные манометры 

    Вопросы водоснабжения для человечества всегда были очень важными, а особую актуальность приобрели с развитием городов и появлением в них различного вида производств. При этом все более актуальной становилась проблема измерения давления воды, т. е. напора, необходимого не только для обеспечения подачи воды через систему водоснабжения, но и для приведения в действие различных механизмов. Честь первооткрывателя принадлежит крупнейшему итальянскому художнику и ученому Леонардо да Винчи (1452-1519 гг.), который впервые применил пьезометрическую трубку для измерения давления воды в трубопроводах.

    Дальнейшее  развитие науки и техники привело  к появлению большого количества жидкостных манометров различных типов, применяемых до настоящего времени во многих отраслях: метеорологии, авиационной и электровакуумной технике, геодезии и геологоразведке, физике и метрологии и пр. Однако, в силу ряда специфических особенностей принципа действия жидкостных манометров их удельный вес по сравнению с манометрами других типов относительно невелик и, вероятно, будет уменьшаться и в дальнейшем. Тем не менее при измерениях особо высокой точности в области давлений, близких к атмосферному давлению, они пока незаменимы. Не потеряли своего значения жидкостные манометры и в ряде других областей (микроманометрии, барометрии, метеорологии, при физико-технических исследованиях). 

    1.1.1. Основные типы жидкостных манометров  и принципы их действия 

    Принцип действия жидкостных манометров можно  проиллюстрировать на примере U-образного жидкостного манометра (рис. 2, а), состоящего из двух соединенных между собой вертикальных трубок 1 и 2, наполовину заполненных жидкостью.

    

 

    Рис. 2. Основные типы жидкостных манометров 

    В соответствии с законами гидростатики при равенстве давлений р1 и р2 свободные поверхности жидкости (мениски) в обеих трубках установятся на уровне I-I. Если одно из давлений превышает другое 12), то разность давлений вызовет опускание уровня жидкости в трубке 1 и, соответственно, подъем в трубке 2, вплоть до достижения состояния равновесия. При этом на уровне II-II уравнение равновесия примет вид:

    Δр=р12 = Н - р • g , (3) 

т. е. разность давлений определяется давлением столба жидкости высотой Н с плотностью р.

    Уравнение (2) с точки зрения измерения давления является фундаментальным, так как давление, в конечном итоге, определяется основными физическими величинами - массой, длиной и временем. Это уравнение справедливо для всех без исключения типов жидкостных манометров. Отсюда следует определение, что жидкостный манометр - манометр, в котором измеряемое давление уравновешивается давлением столба жидкости, образующегося под действием этого давления. Важно подчеркнуть, что мерой давления в жидкостных манометрах является высота столба жидкости. Именно это обстоятельство привело к появлению единиц измерений давления мм вод. ст., мм рт. ст. и других которые естественным образом вытекают из принципа действия жидкостных манометров.

    Чашечный  жидкостный манометр (рис. 2, б) состоит из соединенных между собой чашки 1 и вертикальной трубки 2, причем площадь поперечного сечения чашки существенно больше, чем трубки. Поэтому под воздействием разности давлений Δр изменение уровня жидкости в чашке гораздо меньше, чем подъем уровня жидкости в трубке: Н1 = Н2 • f/F, гае Н1 - изменение уровня жидкости в чашке.; Н2 - изменение уровня жидкости в трубке; f - площадь сечения трубки; F - площадь сечения чашки.

    Отсюда  высота столба жидкости, уравновешивающей измеряемое давление

    Н = Н1 + Н2 = Н2 (1 + f/F), (4)

  а измеряемая разность давлений

    р1-p22•g(1+f/ F),  (5)

    Поэтому при известном коэффициенте k = 1 + f/F разность давлений может быть определена по изменению уровня жидкости в одной трубке, что упрощает процесс измерений.

    Двухчашечный  манометр (рис. 2, в) состоит из двух соединенных при помощи гибкого шланга чашек 1 и 2, одна из которых жестко закреплена, а вторая может перемещаться в вертикальном направлении. При равенстве давлений pl и р2 чашки, а следовательно, свободные поверхности жидкости находятся на одном уровне I-I. Если р1 > р2, то чашка 2 поднимается вплоть до достижения равновесия в соответствии с уравнением (3).

    Единство  принципа действия жидкостных манометров всех типов обусловливает их универсальность  с точки зрения возможности измерения давления любого вида — абсолютного и избыточного и разности давлений.

    К важной метрологической характеристике средств измерения давления относится чувствительность измерительной системы, которая во многом определяет точность отсчета при измерениях и инерционность. Для манометрических приборов под чувствительностью понимается отношение изменения показаний прибора к вызвавшему его изменению давления (п =ΔН/Δр).

    Диапазоны измерений жидкостных манометров в  соответствии с (2) определяются высотой  столба жидкости, т. е. размерами манометра и плотностью жидкости. Наиболее тяжелой жидкостью в настоящее время является ртуть, плотность, которой р = 1,35951 • 104 кг/м . Столб ртути высотой 1 м развивает давление около 136 кПа, т. е. давление, не из много превышающее атмосферное давление. Поэтому при измерении давлений порядка 1 МПа размеры манометра по высоте соизмеримы с высотой трехэтажного дома, что представляет существенные эксплуатационные неудобства, не говоря о чрезмерной громоздкости конструкции. Тем не менее, попытки создания сверхвысоких ртутных манометров предпринимались. Мировой рекорд был установлен в Париже, где на базе конструкций знаменитой Эйфелевой башни был смонтирован манометр высотой ртутного столба около 250 м, что соответствует 34 МПа. В настоящее время этот манометр разобран в связи с его бесперспективностью.  

    1.1.2. Жидкостно-поршневые манометры 

    Очень часто к жидкостным манометрам относят  приборы, измерительная система которых хотя и содержит в качестве одного из элементов жидкость, но по принципу действия в корне отличается от жидкостных манометров. К таким приборам относится дифференциальный манометр типа „кольцевые весы" (рис. 3), состоящий из тороидального корпуса 1, внутренняя полость которого в верхней части разделена перегородкой 2, а нижняя часть до половины заполнена жидкостью 4. Таким образом, корпус имеет две измерительные камеры А и Б, в которые через гибкие шланги подаются измеряемые давления pl и р2. Корпус может поворачиваться относительно опоры 3, расположенной в его геометрическом центре. К нижней части корпуса прикреплен противовес 5.

    При равенстве давлений в камерах  А и Б корпус прибора располагается в соответствии с рис. 4, а. Если одно из давлений больше другого, например, р1 > р2 то под действием разности давлений Δр = p1 р2, воздействующей на перегородку, корпус повернется на определенный угол α, а уровни жидкости внутри корпуса займут положения, соответствующие рис. 4, б. При этом уравнения равновесия измерительной системы принимают вид  

    

, (6) 
 

    

 

    Рис. 3. Дифференциальный манометр типа „Кольцевые весы"

    где F — площадь перегородки (внутренняя площадь поперечного сечения тороида); r1 средний радиус тороида; R2 — расстояние от оси вращения до центра тяжести противовеса; т — масса противовеса; g — ускорение свободного падения; α — угол поворота корпуса. 

    Таким образом, давление определяется массой противовеса, геометрическими параметрами прибора и углом поворота корпуса, а роль заполняющей измерительную систему жидкости сводится к созданию жидкостного затвора между камерами А и Б. Поэтому по виду первичного преобразования - давления в силу, действующую на перегородку, - прибор аналогичен поршневым манометрам.

    Еще в большей мере сказанное относится  к колокольным манометрам, применяемым  в качестве образцовых и эталонных приборов. Основные элементы измерительной системы манометра (рис. 4) : наполовину заполненный водой сосуд 5, цилиндрический колокол 3, подвеска 2 с чашкой 6 для наложения грузов 7, рычаг 1 весового компаратора с указателем положения равновесия 8 и подвески 9 с тарировочным грузом 10. Измеряемое давление подводится под колокол трубкой 4.

Информация о работе Измерение давления