Автор: Пользователь скрыл имя, 19 Февраля 2013 в 09:32, курсовая работа
Для объяснения какого-либо природного явления физики формулируют гипотезу, которая могла бы это явление объяснить. На основании гипотезы делают предсказание, которое, в общем случае, представляет собой некоторое число. Последнее проверяют экспериментально, производя измерения. Если число, полученное в результате эксперимента, согласуется с предсказанным, гипотеза получает ранг физической теории. В противном случае все возвращается на вторую стадию: формулируется новая гипотеза, делается новое предсказание и ставится новый эксперимент.
Примерно к XVI—XVII векам сложился тот принцип физического познания природы, который до сих пор состоит на вооружении у науки и который можно схематически проиллюстрировать вот так:
Для объяснения какого-либо природного явления физики формулируют гипотезу, которая могла бы это явление объяснить. На основании гипотезы делают предсказание, которое, в общем случае, представляет собой некоторое число. Последнее проверяют экспериментально, производя измерения. Если число, полученное в результате эксперимента, согласуется с предсказанным, гипотеза получает ранг физической теории. В противном случае все возвращается на вторую стадию: формулируется новая гипотеза, делается новое предсказание и ставится новый эксперимент.
Постановка эксперимента показывают ключевую роль в процессе научного познания окружающего мира. Только с помощью эксперимента можно проверить физическую модель. Чрезвычайно важен тот факт, что результаты эксперимента, так же как и предсказания физической модели, не качественные, а количественные. То есть представляют собой набор самых обыкновенных чисел. Поэтому сравнение вычисленных и измеренных результатов — вполне однозначная процедура. Только благодаря этому физический эксперимент смог стать ключом, открывающим путь к пониманию мироздания.
Важным достоинством моделирования является конкретность и наглядность, способствующая лучшему пониманию проблемы и постановке исследовательских задач. И, хотя школьное образование в большей степени связано с передачей уже накопленных знаний, моделирование явлений на уроках физики, астрономии и Естествознания весьма актуально, тем более, - в условиях все возрастающего потока информации и имеющей место формализованности содержания современного естественнонаучного образования. Хотелось бы подчеркнуть значимость легко воспроизводимых опытов, не требующих специальной техники и оборудованных кабинетов. Это важно не только в условиях недостаточной материальной базы, но и для развития системы домашних экспериментальных заданий, формирующих у учащихся активное мышление и навыки исследовательской работы.
Анализ эксперимента позволили выявить ряд факторов, обуславливающих необходимость усиления внимания к физическому эксперименту при обучении молекулярной физике:
2. Молекулярные явления могут быть исследованы при помощи статистического и термодинамического методов. Их усвоение требует от школьников высокого уровня мышления. Вместе с достаточно малой наглядностью молекулярных процессов создает определенные трудности у учащихся в приобретении знаний. Из этого следует, что в учебном процессе для обеспечения усвоения учащимися знаний по молекулярной физике нужно усилить роль физического эксперимента.
3. Процесс подготовки
и проведения натурных
- не все молекулярные
процессы можно показать в
условиях школьной физической
лаборатории из-за сложности,
громоздкости и высокой
- натурный эксперимент не всегда достаточно нагляден, что затрудняет осмысление учащимися механизма возникновения и протекания изучаемых явлений;
- приборы сложны и неудобны в обслуживания, тратится большое время на управление ходом демонстраций;
- учебный физический эксперимент по молекулярной физике в школе носит, в основном, качественный характер, отражает только конечный результат. Количественная же сторона, механизм протекания явления или процесса, от понимания которого зависит глубина приобретенных знаний, остаются в стороне;
- для облегчения усвоения материала учащимися при изучении молекулярной физики иногда прибегают к использованию специальных средств наглядности (плакатов, видеофильмов и др.). Но видеофильмы тоже имеют определенные недостатки (часто видеоматериалы перегружены второстепенной информацией; отсутствует возможность влияния на содержание и темп подачи материала; зритель является пассивным наблюдателем).
4. Результаты
констатирующего исследования
Решение указанных проблем в сложивших условиях школ возможно за счет совершенствования экспериментальной поддержки обучения молекулярной физике с использованием компьютерных технологий в сочетании с реальным физическим экспериментом.
Статистический и термодинамический методы исследования. Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики.
Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы, в конечном счете, определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.
Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах — фундаментальных законах, установленных в результате обобщения опытных данных.
Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинамический метод несколько ограничен: термодинамика ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.
Термодинамика
имеет дело с термодинамической
системой — совокупностью
Температура — одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы — термодинамическую и Международную практическую, градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С). В Международной практической шкале температура замерзания и кипения воды при давлении 1,013*105 Па соответственно 0 и 100°С (реперные точки).
Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давления 609 Па находятся в термодинамическом равновесии). Температура этой точки по термодинамической шкале равна 273,16 К (точно). Градус Цельсия равен кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Международной практической шкале связаны соотношением
Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.
Удельный объем v — это объем единицы массы. Когда тело однородно, т. е. его плотность =const, то v=V/m=1/p. Так как при постоянной массе удельный объем пропорционален общему объему, то макроскопические свойства однородного тела можно характеризовать объемом тела.
Параметры состояния системы могут изменяться. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называется термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).
В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой считают, что:
1) собственный
объем молекул газа
2) между молекулами газа
отсутствуют силы
3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.
Модель идеального
газа можно использовать при изучении
реальных газов, так как они в
условиях, близких к нормальным (например,
кислород и гелий), а также при
низких давления» и высоких
Для изготовления прибора для измерения массы жидкости необходимы следующие приборы и материалы:
На конец
одной трубочки надели резиновый
жгут. Для того чтобы произвести
взаимосвязь системы