Автор: Пользователь скрыл имя, 01 Апреля 2013 в 16:47, контрольная работа
Изменение ударных сил во времени происходит примерно так. Сначала сила быстро возрастает до наибольшего значения, а затем падает до нуля. Максимальное ее значение может быть очень большим. Однако основной мерой ударного взаимодействия является не сила, а ударный импульс, численно равный заштрихованной площади под кривой F (t).
Ударные действия
1.Основы теории удара
2. Биомеханика ударных действий
Список литературы
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Филиал федерального государственного образовательного бюджетного учреждения высшего профессионального образования «Кемеровский государственный университет» в г. Прокопьевске
(ПФ КемГУ)
Контрольная работа
по дисциплине «Биомеханика»
студента заочного отделения гр. ФКз-11у
2(второй курс) 4(четвертый семестр)
Раджабова Владислава Станиславовича
Работа сдана:
Работа проверена
Рецензент:
к.м.н. Меркулов А.Н.
Прокопьевск 2013г.
Тема: Характеристика ударных действий.
Содержание
Ударные действия
1.Основы теории удара
2. Биомеханика ударных действий
Список литературы
Ударные действия
1.Основы теории удара
Ударом в механике называется кратковременное взаимодействие тел, в результате которого резко изменяются их скорости. При таких взаимодействиях возникают столь большие силы, что действием всех можно пренебречь.
Примерами ударов являются
- удары по
мячу, шайбе. В данном случае
происходит быстрое, изменение
скорости по величине и направл
- приземление
после прыжков и соскоков (скорость
тела спортсмена резко
- вылет стрелы
из лука, акробата в цирке с
подкидной доски и т.п. Здесь
скорость до начала
Изменение ударных сил во времени происходит примерно так. Сначала сила быстро возрастает до наибольшего значения, а затем падает до нуля. Максимальное ее значение может быть очень большим. Однако основной мерой ударного взаимодействия является не сила, а ударный импульс, численно равный заштрихованной площади под кривой F (t). Он может быть вычислен как интеграл:
где S – ударный импульс, t1 и t2 – время начала и конца удара, F(t) – зависимость ударной силы F от времени t.
За время удара скорость тела, например мяча, изменяется на определенную величину. Это изменение прямо пропорционально ударному импульсу и обратно пропорционально массе тела. Другими словами, ударный импульс равен изменению количества движения тела.
Последовательность механических явлений при ударе такова: сначала происходит деформация тел, при этом кинетическая энергия движения переходит в потенциальную энергию упругой деформации, затем потенциальная энергия переходит в кинетическую. В зависимости от того, какая часть потенциальной энергии переходит в кинетическую, а какая рассеивается в виде тепла, различают три вида удара:
1. Вполне упругий
удар – вся механическая
2. Неупругий удар – энергия деформации полностью переходит в тепло. Пример: приземление в прыжках и соскоках, удар шарика из пластилина в стену и т. п. При неупругом ударе скорости взаимодействующих тел после удара равны (тела объединяются).
3. Не вполне
упругий удар — лишь часть
энергии упругой деформации
Ньютон предложил характеризовать не вполне упругий удар гак называемым коэффициентом восстановления. Он равен отношению скоростей взаимодействующих тел после и до удара. Коэффициент восстановления можно измерить так: сбросить мяч на жесткую горизонтальную поверхность, измерить высоту падения мяча (hп ) и высоту, на которую он отскакивает (hо). Коэффициент восстановления равен:
Коэффициент восстановления зависит от упругих свойств соударяемых тел. Например, он будет различен при ударе теннисного мяча о разные грунты и ракетки разных типов и качества. Зависит коэффициент восстановления и от скорости ударного взаимодействия и с увеличением скорости он уменьшается. Например, по международным стандартам теннисный мяч, сброшенный на твердую поверхность с высоты 2 м 54 см (100 дюймов), должен отскакивать на высоту 1,35-1,47 м (коэффициент восстановления 0,73-0,76). Но если его сбросить, скажем, с высоты в 20 раз большей, то даже без сопротивления воздуха отскок возрастет меньше чем в 20 раз.
В зависимости от направления движения мяча до удара различают прямой и косой удары; в зависимости от направления ударного импульса - центральный и касательный удары.
При прямом ударе направление полета мяча до удара перпендикулярно к плоскости ударяющего тела или преграды. Пример: падение мяча сверху на горизонтальную поверхность. В этом случае мяч после отскока летит в обратном направлении.
При косом ударе угол сближения (рис.) отличен от нуля. При идеальном упругом ударе углы сближения и отскока равны. При реальных (не вполне упругих) ударах угол отскока больше угла сближения, а скорость после отскока от неподвижной преграды меньше, чем до удара.
Центральный удар характеризуется тем, что ударный импульс проходит через ЦМ мяча. В этом случае мяч летит не вращаясь. При касательном ударе ударный импульс не проходит через ЦМ мяча – мяч после такого удара летит с вращением. Как уже отмечалось, вращение мяча изменяет траекторию его полета. Изменяет оно также отскок мяча. Например, в настольном теннисе поступательная скорость крученого мяча (шарика) после отскока нередко выше, чем до соприкосновения со столом: часть кинетической энергии вращения переходит в энергию поступательного движения.
При центральном ударе двух упругих тел (например, двух бильярдных шаров) количество движения в системе этих тел остается постоянным: m1v1+m2v2=m1 и 1+m2u2 = const. где mт1 и m2 – массы первого и второго тела, v1 и v2 – их скорости до удара; и u1 и и2 — их скорости после удара.
Если скорость одного из тел до удара равна нулю, то после удара она станет:
Из формулы видно, что скорость после удара будет тем больше, чем больше скорость и масса ударяющего тела (ударная масса). В более сложных случаях (нецентральный и не вполне упругий удар) картина сложнее, однако и в них скорость после удара будет тем выше, чем больше ударная масса и скорость тела, наносящего удар.
2. Биомеханика ударных действий
Ударными в
биомеханике называются действия, результат
которых достигается
1. Замах –
движение, предшествующее ударному
движению и приводящее к
2. Ударное движение – от конца замаха до начала удара.
3. Ударное взаимодействие (или собственно удар) – столкновение ударяющихся тел.
4. Послеударное движение – движение ударного звена тела после прекращения контакта с предметом, по которому наносится удар.
Уже говорилось, что при механическом ударе скорость тела (например, мяча) после удара тем выше, чем больше скорость ударяющего звена непосредственно перед ударом. При ударах в спорте такая зависимость необязательна. Например, при подаче в теннисе увеличение скорости движения ракетки может привести к снижению скорости вылета мяча, так как ударная масса при ударах, выполняемых спортсменом, непостоянна: она зависит от координации его движений. Если, например, выполнять удар за счет сгибания кисти или с расслабленной кистью, то с мячом будет взаимодействовать только масса ракетки и кисти. Если же в момент удара ударяющее звено закреплено активностью мышц-антагонистов и представляет собой как бы единое твердое тело, то в ударном взаимодействии будет принимать участие масса всего этого звена.
Иногда спортсмен наносит два удара с одной и той же скоростью, а скорость вылета мяча или сила удара оказывается различной. Это происходит из-за того, что ударная масса неодинакова. Величина ударной массы может использоваться как критерий эффективности техники ударов. Поскольку рассчитать ударную массу довольно сложно, ее оценивают так:
Эффективность ударного взаимодействия =
скорость мяча после_______________
скорость ударяющего сегмента до удара.
Этот показатель различен в ударах разных типов. Например, в футболе он изменяется от 1,20 до 1,65. Зависит, он и от веса спортсмена.
Некоторые спортсмены, владеющие очень сильным ударом (в боксе, волейболе, футболе и др.), большой мышечной силой не отличаются. Но они умеют сообщать большую скорость ударяющему сегменту и в момент удара взаимодействовать с ударяемым телом большой ударной массой.
Многие ударные спортивные действия нельзя рассматривать как «чистый» удар, основа теории которого изложена в предшествующем параграфе. В теории удара в механике предполагается, что удар происходит настолько быстро и ударные силы настолько велики, что всеми остальными силами можно пренебречь. Во многих ударных действиях в спорте эти допущения не оправданы. Время удара в них хотя и мало, но все-таки пренебрегать им нельзя; путь ударного взаимодействия, по которому во время удара движутся вместе соударяющиеся тела, может достигать 20-30 см.
Поэтому в спортивных ударных действиях, в принципе, можно изменить количество движения во время соударения за счет действия сил, не связанных с самим ударом.
Это легко объяснить
на таком примере. Представим, что
автомобиль, едущий со скоростью 30 км/час,
ударяется о подвижное
1. Автомобиль
едет с неработающим
2. Двигатель
включен, более того –
3. Двигатель выключен, а тормозная система включена. Скорость и количество движения автомобиля уменьшатся из-за включенных тормозов.
Описанное можно сравнить с действием мышц человека при ударах. Если ударное звено во время удара дополнительно ускоряется за счет активности мышц, ударный импульс и соответственно скорость вылета снаряда увеличиваются; если оно произвольно тормозится, ударный импульс и скорость вылета уменьшаются (это бывает нужно при точных укороченных ударах, например при передачах мяча партнеру). Некоторые ударные движения, в которых дополнительный прирост количества движения во время соударения очень велик, вообще являются чем-то средним между метаниями и ударами (так иногда выполняют вторую передачу в волейболе).
Координация движений при максимально сильных ударах подчиняется двум требованиям:
1) сообщение наибольшей скорости ударяющему звену к моменту соприкосновения с ударяемым телом. В этой фазе движения используются те же способы увеличения скорости, что и в других перемещающих действиях;
2) увеличение ударной массы в момент удара. Это достигается «закреплением» отдельных звеньев ударяющего сегмента путем одновременного включения мышц-антагонистов и увеличения радиуса вращения. Например, в боксе и карате сила удара правой рукой увеличивается примерно вдвое, если ось вращения проходит вблизи левого плечевого сустава, по сравнению с ударами, при которых ось вращения совпадает с центральной продольной осью тела.
Время удара настолько кратковременно, что исправить допущенные ошибки уже невозможно. Поэтому точность удара в решающей мере обеспечивается правильными действиями при замахе и ударном движении. Например, в футболе место постановки опорной ноги определяет у начинающих целевую точность примерно на 60-80%.
Тактика спортивных
игр нередко требует
Список литературы
1) Готовцев, П.И.,
Самоконтроль при занятиях
2) Дубровский, В.И., Спортивная физиология.
3) Иванов, В.В., Комплексный
контроль в подготовке
4) Ильинич, В.И., Физическая культура.
5) Курамшин, Ю.Ф., Теория и методика физической культуры.
6) Назаренко,
Л.Д., Оздоровительные основы