Автор: Пользователь скрыл имя, 22 Октября 2012 в 22:43, реферат
Открытие автоэлектронной эмиссии привело к появлению совершенно новой области микро- и наноэлектроники, так называемой вакуумной микроэлектроники, позволило создать новые фундаментальные методы исследования топологии поверхности с атомным разрешением (сканирующая и просвечивающая электронная микроскопия сверхвысокого разрешения, туннельная микроскопия, электронная голография и др.).
1.Введение
2. Механизм автоэлектронной эмиссии
2.1 Полевая эмиссионная микроскопия
2.2 Предельная плотность тока автоэлектронной эмиссии
2.3 Некоторые приложения автоэлектронной эмиссии
3.Термоэлектронная эмиссия
3.1 Основные соотношения
3.2 Влияние примесей и дефектов
3.3 Потенциал сил изображения
3.4 Термоэлектронная эмиссия из полупроводников
3.5 Влияние неоднородностей
3.6 Виды термоэмиттеров
4. Список литературы
СОДЕРЖАНИЕ
1.Введение
2.
Механизм автоэлектронной
2.1
Полевая эмиссионная
2.2
Предельная плотность тока
2.3 Некоторые приложения автоэлектронной эмиссии
3.Термоэлектронная эмиссия
3.1 Основные соотношения
3.2 Влияние примесей и дефектов
3.3 Потенциал сил изображения
3.4 Термоэлектронная эмиссия из полупроводников
3.5 Влияние неоднородностей
3.6 Виды термоэмиттеров
4. Список литературы
1.ВВЕДЕНИЕ
Под электронной эмиссией понимается испускание электронов из твердого тела или какой-либо другой среды. Наибольший интерес представляет эмиссия электронов в вакуум. Тело, из которого испускаются электроны, называется катодом. Электроны не могут самопроизвольно покинуть поверхность катода, так как для этого надо совершить работу против внутренних сил, удерживающих их на границе раздела катод-вакуум. Таким образом, для того чтобы высвободить электроны из катода, необходимо затратить энергию. По способу, которым эта энергия передается катоду, эмиссионные процессы называются термоэмиссией, когда энергия передается электронам при нагревании катода за счет тепловых колебаний решетки; вторичной электронной эмиссией, когда эта энергия передается другими частицами (электронами или ионами, бомбардирующими катод); фотоэлектронной эмиссией, при которой электроны выбиваются квантами света, и т.п.
Автоэлектронной эмиссией называется явление испускания электронов в вакуум с поверхности твердого тела или другой среды под действием очень сильного электрического поля напряженностью F = 107-108 В/см. Для того чтобы создать такие сильные электрические поля, к обычным макроскопическим электродам необходимо было бы прикладывать напряжения в десятки миллионов вольт. Практически автоэлектронную эмиссию можно возбудить при гораздо меньших напряжениях, если придать катоду форму тонкого острия с радиусом вершины в десятые или сотые доли микрона. Сейчас реализованы условия, когда при микроскопических расстояниях катод-анод, равных единицам или долям микрона, и очень малых радиусах кривизны катода r = 20-50 Å (1Å = 10- 8 см) автоэмиссию удается получать при напряжениях всего в сотни и даже десятки вольт. Среди эмиссионных явлений автоэмиссия занимает особое место, так как это чисто квантовый эффект, при котором для высвобождения электронов из катода не требуется затрат энергии на сам эмиссионный акт в отличие от термо-, фото- и вторичной эмиссии.
Открытие автоэлектронной эмиссии привело к появлению совершенно новой области микро- и наноэлектроники, так называемой вакуумной микроэлектроники, позволило создать новые фундаментальные методы исследования топологии поверхности с атомным разрешением (сканирующая и просвечивающая электронная микроскопия сверхвысокого разрешения, туннельная микроскопия, электронная голография и др.).
Открытие явления автоэлектронной эмиссии в 1897 году связано с именем замечательного экспериментатора Роберта Вуда. При исследовании вакуумного разряда Вуд заметил в сильном электрическом поле испускание электронов, наблюдая свечение стекла под их воздействием, и описал это явление.
2.МЕХАНИЗМ АВТОЭЛЕКТРОННОЙ ЭМИССИИ
Потенциальный барьер
Работа против сил, удерживающих электрон внутри катода, обычно представляется в виде энергетической диаграммы . Совершение работы против удерживающих сил равнозначно тому, что электрону требуется преодолеть потенциальный барьер U, созданный этими силами. Основными силами, удерживающими электрон на поверхности катода, являются так называемые силы зеркального изображения, связанные с тем, что электрон, покидающий катод, поляризует электронный газ внутри твердого тела таким образом, как будто он создает внутри положительный заряд, равный по абсолютной величине заряду эмитированного электрона. Взаимодействие между этими зарядами осуществляется по закону Кулона, и потенциал этих сил
U= -e2 / 4x (1)
где e - заряд электрона, x - расстояние, характеризующее удаление эмитированного электрона от поверхности катода. Знак минус связан с тем, что за нуль энергии принята энергия свободного электрона, находящегося на бесконечном расстоянии от поверхности.
Туннельный эффект
Работа, которую необходимо затратить для преодоления потенциального барьера на границе катод-вакуум, носит название работы выхода A = eƒ, где ƒ - потенциал работы выхода. Для того чтобы электрон мог покинуть поверхность катода, согласно представлениям классической физики его энергия обязательно должна быть больше, чем высота потенциального барьера.
Однако есть физические ситуации, в которых электрон может освободиться не перепрыгивая через барьер, а проходя сквозь него. Это возможно в том случае, когда барьер на границе очень тонкий. Такой очень тонкий барьер может быть создан сильным электрическим полем. Процесс просачивания электрона сквозь потенциальный барьер называется туннельным эффектом. Именно в результате этого туннельного эффекта и осуществляется автоэлектронная эмиссия.
Суммарный потенциал в этом случае имеет вид
U(x)=- e2/4x-eFx (2)
При этом форма потенциального барьера изменяется так, как это показано на рис. 1. Чем сильнее поле, тем уже потенциальный барьер.
Для описания туннельного эффекта обычно вводят характеристику, которая называется прозрачностью потенциального барьера. Прозрачность барьера D определяет вероятность того, что электрон, упав изнутри металла на барьер, пройдет сквозь него в вакуум. Квантово-механические расчеты показывают, что выражение для прозрачности произвольного барьера может быть записано в виде
D= exp[-2/h (3)
где h = 6,62 " 10- 34 Дж " с - постоянная Планка, m - масса туннелирующей частицы, U - потенциальная энергия, Е - энергия электрона, падающего на барьер.
Из этого выражения следует, что вероятность прохождения частицы сквозь потенциальный барьер очень сильно зависит от ширины барьера и его превышения над уровнем энергии туннелирующего электрона E, то есть от U - E или в конечном счете от высоты барьера, определяемой работой выхода. Ширина же барьера, как можно видеть из рис. 1, зависит от напряженности электрического поля.
Если мы знаем, сколько электронов падает изнутри металла на потенциальный барьер, а это может быть рассчитано из теории твердого тела, и знаем прозрачность, то можно рассчитать полный эмиссионный ток j электронов, выходящих в вакуум, и получить формулу для автоэлектронной эмиссии. Такие квантово-механические расчеты впервые были выполнены Р. Фаулером (R.H. Fowler) и Л.В. Нордгеймом (L.W. Nordheim):
J=1,54 ×10-6 F2 / ƒt2(y)× exp[-6,83×107ƒ2/3/F×υ(y) (4)
Функции υ(y) и t(y) табулированы [1, 2]. Функция t(y), стоящая в предэкспоненциальном множителе, близка к единице и слабо изменяется с изменением аргумента. Функция υ(y) называется функцией Нордгейма и учитывает понижение потенциального барьера.
Теория Фаулера-Нордгейма прекрасно объяснила экспериментальные факты. Она полностью подтвердила экспоненциальную зависимость эмиссионного тока от поля. Из нее также следует возможность получения гигантских плотностей тока, в миллионы раз превышающих плотности тока, которые могли бы быть получены любым другим традиционным способом - в результате термо-, фото- и других видов эмиссии. Вследствие экспоненциальной зависимости следует, что разброс эмитированных электронов по энергиям оказывался в несколько раз более узким, чем в случае термоэмиссии. Из теории вытекает, что автоэмиссия должна наблюдаться также при низких температурах вплоть до температур, близких к абсолютному нулю. Все эти свойства автоэмиссии были подтверждены экспериментально. Процесс автоэмиссии оказался практически безынерционным.
Уникальные свойства автоэмиссии вызвали исключительный интерес у инженеров и технологов, так как открывали совершенно новые перспективы приложений в области приборостроения, диагностики и технологии.
2.1 ПОЛЕВАЯ ЭМИССИОННАЯ МИКРОСКОПИЯ
Важный этап в исследовании полевой эмиссии связан с изобретением в 1936 году Э. Мюллером автоэмиссионного микроскопа-проектора [1, 2]. Практически с этого момента начинается последовательное накопление сведений о поверхностных свойствах полевых эмиттеров. С помощью этого прибора удалось выяснить многие причины, приводящие к нестабильности процесса полевой эмиссии, исследовать характер изменения формы полевого эмиттера под воздействием поля, температуры, адсорбции чужеродных атомов, электронной и ионной бомбардировки. Высокие увеличение и разрешающая способность автоэмиссионного микроскопа сделали его незаменимым инструментом при изучении адсорбции, десорбции, эпитаксии, поверхностной диффузии, фазовых превращений и др. [1, 2, 4].
Принцип полевой эмиссионной микроскопии состоит в том, что если на пути электронного потока, эмитированного с тонкого острия (десятые доли микрона), на макроскопическом расстоянии (порядка нескольких сантиметров) поставить флуоресцирующий экран - анод, то на нем электронные лучи отобразят проекцию вершины острия с очень большим увеличением (рис. 2).
Так как электроны, эмитируемые с поверхности острия, разлетаются почти радиально, то увеличение такого микроскопа-проектора равно отношению расстояния от острия до экрана к радиусу вершины острия. Если быть более точным, то на траекторию электронов влияют основание острия и электроды, на которых оно закреплено, поэтому траектории не совсем радиальны, электроны движутся по некоторым пологим параболам и проекция на экране оказывается немного поджатой. С учетом этого обстоятельства увеличение M выражается простой формулой
M= 1/γ×R/r
где γ - коэффициент сжатия (1,5 < γ < 2), R - расстояние анод-катод, r - радиус острия эмиттера. Поскольку острие имеет размеры порядка десятых или сотых долей микрометра, а расстояние R может быть сделано порядка 3-10 см, увеличение такого устройства оказывается очень большим и может достигать 105-106 крат.
Э. Мюллер впервые применил такой принцип автоэмиссионной микроскопии для изучения распределения плотности эмиссионного тока на поверхности острия эмиттера. При этом он заметил, что получающееся изображение не является однородным, а представляет собой симметрично расположенные яркие и темные пятна. Он понял, что отдельные пятна отображают различные участки эмитирующей поверхности, обладающие разной работой выхода.
Можно представить себе такую картину: на кубический кристалл (объемоцентрированный, гранецентрированный или гексагональный) надевается полусферическая "шляпа". Эта "шляпа" вырезает на поверхности гладкий полусферический сегмент, и таким образом на поверхности оказываются срезы различных кристаллографических плоскостей. Из кристаллографии известно, что разные кристаллографические плоскости имеют различное расположение и плотность упаковки атомов. Известно также, что плотность упаковки атомов определяет величину работы выхода. Плотноупакованные грани обладают высокой работой выхода, рыхлые, менее плотноупакованные грани - более низкой работой выхода. Таким образом, на поверхности флуоресцирующего экрана за счет различия в плотности эмиссионного потока отображаются различные кристаллографические плоскости с тем самым большим увеличением 105-106 крат, о котором было сказано выше.
Автоэмиссионная картина вольфрамового (W) острийного кристалла. На нем видны не одно, как обычно, а два монокристаллических зерна. Сопоставление эмиссионного изображения с данными рентгеноструктурного анализа, а также сравнение параметров изображения с рассчитанными заранее кристаллографическими проекциями позволили однозначно идентифицировать плоскости, которые видны на экране. На представленном эмиссионном изображении отчетливо можно видеть плотноупакованную грань {011} (в кристаллографических индексах Миллера), грань типа {112}, грань куба {100} и т.д.
Мюллеру удалось также впервые создать микроскопию атомного масштаба, используя открытое им явление полевой ионизации, так называемый полевой ионный микроскоп. Ионная картина W-острия, ориентированного в том же самом кристаллографическом направлении. На этой картине можно видеть отдельные атомы в виде отдельных точек. Это было великое изобретение - первое в истории человечества прямое наблюдение атомной структуры вещества. К сожалению, вследствие ограниченности объема статьи мы не можем описать здесь принцип автоионной микроскопии и те выдающиеся достижения, которые были получены с помощью этого замечательного прибора. Это предмет специального рассмотрения.
Автоэмиссионный микроскоп обладает высоким разрешением. Под разрешением понимается возможность раздельно наблюдать на объекте две близлежащие точки. В электронной полевой микроскопии разрешение определяется тем, что электрон обладает волновой природой, то есть в соответствии с соотношением де Бройля длина его волны λ = h / p, где p = mυ - импульс электрона. Если к промежутку катод-анод микроскопа приложить ускоряющее напряжение U, то длина волны электрона, как можно легко показать, соответствует в ангстремах, если U выражено в вольтах. Оказывается, что за счет эффекта дифракции размытие при обычных для полевой эмиссионной микроскопии ускоряющих напряжениях в несколько киловольт равно приблизительно 8Å. Кроме того, размытие происходит также из-за того, что покидающий поверхность туннелирующий электрон имеет тангенциальную по отношению к поверхности составляющую скорости. Суммарное размытие в обычных условиях полевой эмиссионной микроскопии составляет 20-30 Å. Согласно сделанным оценкам , разрешающая способность полевого эмиссионного микроскопа d может быть вычислена по приближенной формуле
δ=2,62γ(r/kυ(y)φ1/2)1/2Å,
где γ- коэффициент сжатия, r - радиус эмиттера (в Å), k - коэффициент, k = 5, υ(y) - функция Нордгейма, φ - работа выхода (в эВ).
Полевой эмиссионный микроскоп оказался замечательным прибором, позволившим исследовать важнейшие свойства поверхности в сильном электрическом поле и различные тонкие явления на поверхности. Прежде всего полевой эмиссионный микроскоп дал возможность понять то, что происходит на поверхности самого эмиттера в различных условиях: выяснить причины нестабильности в работе полевого катода, уточнить его эмиссионные характеристики, измерить локальные плотности тока из различных участков эмитирующей поверхности и др. С помощью полевого эмиссионного микроскопа оказывается возможным идентифицировать кристаллическую структуру вещества посредством сравнения параметров эмиссионного изображения с рассчитанными кристаллографическими проекциями.