Автор: Пользователь скрыл имя, 12 Февраля 2013 в 15:42, реферат
Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
Оглавление
1 История открытий в области строения атомного ядра 3
1.1 Модели атома до Бора 3
1.2 Открытие атомного ядра 4
1.3 Атом Бора 7
1.4 Расщепление ядра 9
1.5 Протонно-нейтронная модель ядра 11
1.6 Искусственная радиоактивность 11
2 Строение и важнейшие свойства атомных ядер 13
2.1 Основные свойства и строение ядра 13
2.2 Энергия связи ядер. Дефект массы 15
2.3 Ядерные силы 18
2.4 Радиоактивность, g-излучение, a и b-распад 19
Литература 21
Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.
3. При образовании
ядра происходит уменьшение
называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Если ядро с массой Mяд образовано из Z протонов с массой mp и из (A-Z) нейтронов с массой mn, то
Dm=Zmp+(A-Z)mn-Mяд.
Вместо массы ядра Мяд величину Dm можно выразить через атомную массу Мат:
Dm=ZmН+(A-Z)mn-Mат,
где mH - масса водородного атома.
При практическом вычислении Dm массы всех частиц и атомов выражаются в атомных единицах массы.
Дефект массы служит мерой энергии связи ядра:
Wсв=Dmс2=[Zmp+(A-Z)mn-Mяд]с2
Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.
4. Удельной энергией связи ядра wсв называется энергия связи, приходящаяся на один нуклон: wсв= . Величина wсв составляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.
5. Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А=const).
2.3 Ядерные силы
1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).
2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 м называется радиусом действия ядерных сил.
3. Ядерные силы обнаруживают заря
4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел А. Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.
2.4 Радиоактивность, g-излучение, a и b-распад
1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием некоторых частиц.
Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов.
Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.
2. Обычно все типы
радиоактивности
3. Альфа-распадом называется испускание ядрами некоторых химических элементов a-частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А>200 и зарядами ядер Ze>82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов.
4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват. Первые два типа превращения состоят в том, что ядро испускает электрон (позитрон) и электронное антинейтрино (электронное нейтрино). Эти процессы происходят путем превращения одного вида нуклона в ядре в другой: нейтрона в протон или протона в нейтрон. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b± -захвата сопровождается характеристическим рентгеновским излучением.
5. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.
Литература
1. Григорьев В.И., Мякишев
Г.Я. Силы в природе.
// М., Наука, 1983 г.
2. Яворский Б.М., Детлаф А.А. Справочник
по физике.
// М., Наука, 1990 г.
3. Кудрявцев П.С. Курс
истории физики.
// М., Просвещение, 1982 г.