Автор: Пользователь скрыл имя, 10 Мая 2012 в 19:32, реферат
Изменялся ли наш мир? В 1916 г. немецкий ученый Альберт Эйнштейн (1879—1955) разработал теорию относительности, которую сразу же начал применять для создания космологической модели Вселенной. Со времен Аристотеля считалось, что наша Вселенная стационарна, т. е. с течением времени она не только не меняется в общих чертах, но в ней не происходит каких-либо крупномасштабных движений.
Рождение Вселенной
Изменялся ли наш мир? В 1916 г. немецкий ученый Альберт Эйнштейн (1879—1955) разработал теорию относительности, которую сразу же начал применять для создания космологической модели Вселенной. Со времен Аристотеля считалось, что наша Вселенная стационарна, т. е. с течением времени она не только не меняется в общих чертах, но в ней не происходит каких-либо крупномасштабных движений. Вселенная — согласно теории относительности — отнюдь не стационарна. Она либо расширяется, либо сжимается! Эйнштейн, однако, не решился опровергнуть устоявшееся мнение, поскольку не был до конца уверен в безошибочности своих выводов.
В варианте Эйнштейна Вселенная получилась конечной и замкнутой — нечто аналогичное поверхности шара. Ее пространство искривлено, и луч света, идущий в одном направлении, через определенный промежуток времени должен вернуться в исходную точку, но с противоположной стороны. Одним из тех, кто иначе взглянул на подобную неизменную модель Мироздания, стал российский метеоролог, математик по образованию, Александр Фридман (1888—1925). Он доказал, что первоначальное решение Эйнштейна не было ошибочным: действительно, Вселенная должна изменяться.
Впрочем, все эти рассуждения о якобы расширяющейся Вселенной воспринимались поначалу скептически. Астрономы не соглашались считать подобные теории описанием реального мира до тех пор, пока они не будут подтверждены наблюдениями.
Честь стать первооткрывателем в этой области принадлежит американскому астроному Эдвину Хабблу (1889—1953). На основе многочисленных наблюдений он в 1929 г. установил, что Вселенная в целом расширяется — галактики и их скопления удаляются друг от друга и от нашей Галактики с огромной скоростью. Причем «разбегание» становится тем быстрее, чем больше оказываются расстояния между звездными «материками». С течением времени размеры Вселенной непрерывно возрастают. "Ученые произвели необходимые расчеты и определили, что возраст Вселенной приблизительно равен 15 млрд лет.
Открытие Хаббла положило начало новым представлениям о Вселенной — ее глобальная эволюция была доказана теоретически и практически.
Теория большого взрыва. Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва.
Все вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — ее практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.
В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «перво-вещества»! Этому моменту ученые дали название «Большой взрыв». Вселенная начала расширяться и остывать.
Следует отметить, что вопрос о том, каким же было рождение Вселенной — «горячим» или «холодным», — не сразу был решен однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным — ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной.
Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав «горячей» Вселенной должен отличаться от состава «холодной». А от этого в свою очередь зависят размеры и темпы развития небесных тел...
Реликтовое излучение. Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают ученые, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далекую эпоху, когда не было еще ни звезд, ни галактик, ни нашей Солнечной системы.
Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940-х гг. американский физик Джордж Гамов (1904—1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчеты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды ее существования была очень высокая температура. Нагретое вещество «светилось» — испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения — примерно 5—6 К. В 1965 г. американские ученые-радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат. «остаток», отсюда и название излучения — «реликтовое») тех далеких времен, когда Вселенная была фантастически горяча.
Эволюция вселенной
Вопрос об эволюции вселенной всегда был открытым для человечества. Звёздное небо над головой долгое время было для человека символом вечности и неизменности. Лишь в Новое время люди осознали, что "неподвижные" звёзды на самом деле движутся, причём с огромными скоростями. В XX в. человечество свыклось с ещё более странным фактом: расстояния между звёздными системами - галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются. И дело здесь не в природе галактик сама Вселенная непрерывно расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием XX в.
Всё началось, когда Альберт Эйнштейн создал общую теорию относительности. В её уравнениях описаны фундаментальные свойства материи, пространства и времени. ("Относительный" по-латыни звучит как rela-tivus, поэтому теории, основанные на теории относительности Эйнштейна, называются релятивистскими.)
Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот результат не удовлетворил великого учёного. Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввёл в них дополнительное слагаемое - так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.
В начале 20-х гг. советский математик Александр Александрович Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два решения для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.
Все эти теоретические рассуждения никак не связывались учёными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширение видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения её спектральных линий.
Ещё во втором десятилетии XX в. американский астроном Всего Слай-фер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.
Хаббл определил расстояния до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.
Означает ли это, что наша Галактика является центром, от которого и идёт расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстоянию до них. Само пространство как бы раздувается. Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причём тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звёздные системы повсюду во Вселенной сохраняют свой объём. Это объясняется тем, что составляющие их звёзды связаны между собой силами гравитации.
Факт постоянного расширения Вселенной установлен твердо. Самые далёкие из известных галактик и ква-заров имеют такое большое красное смещение, что длины волн всех линий в их спектрах оказываются больше, чем у близких источников, в пять-шесть раз!
Но если Вселенная расширяется, то сегодня мы видим её не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Ещё раньше отдельных галактик просто не могло существовать, а ещё ближе к началу расширения не могло быть даже звёзд. Эта эпоха - начало расширения Вселенной - удалена от нас на 12-15 млрд лет. Оценки возраста галактик пока слишком приближённы, чтобы уточнить эти цифры. Но надёжно установлено, что самые старые звёзды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звёздных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной.
На начальной стадии всё вещество Вселенной имело настолько высокую плотность, что её даже невозможно себе представить. Идею о расширении Вселенной из сверхплотного состояния ввёл в 1927 г. бельгийский астроном Жорж Леметр, а предположение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом. Но остаётся множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время - одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты - звёзды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и многие другие вопросы работают современные астрономы и физики.
Солнечная система
Центральное тело нашей системы, это Солнце – звезда, принадлежащая к классу желтых карликов. Солнце является самым массивным объектом нашей планетной системы.
Первая планета Солнечной системы – Меркурий – самая маленькая планета земной группы (в нее кроме Земли и Меркурия входят Венера и Марс). После Меркурия идетВенера – сестра Земли, скрытая вечными облаками. Третья планета Солнечной системы – Земля – колыбель человечества. У нашей планеты есть спутник – Луна, который в 81 раз легче Земли, но все равно нашу планету можно считать двойной. Четвертая планета – красныйМарс – пустынная планета с двумя спутниками, которая приковывала взоры всех людей в недалеком прошлом и... второе небесное тело, на которое планируется пилотируемый полет (первым была Луна).
Следующая большая группа планет – планеты-гиганты. Самым большим и массивным из гигантов являетсяЮпитер, который представляет из себя Солнечную систему в миниатюре. Из его более чем 40 спутников мы остановимся на самых больших – Ио, Европе, Ганимеде иКаллис
Самая последняя планета Солнечной системы – Плутон – является самой маленькой планетой. У Плутона имеется три спутника, самый крупный из которых – Харон, который немногим меньше самой планеты. Благодаря этому система Плутон-Харон является действительно двойной планетой. После открытия в поясе Койпера трансплутонного объекта Квавар с диаметром более половины диаметра Плутона всерьез начали рассматривать вопрос о том, чтосчитать планетой и выделять ли Плутон и транплутонные объекты в группу планет-карликов или понизить статус Плутона до астероида. 24 августа 2006 года на съезде 26-й Генеральной Ассамблее МАС Плутона лишили статуса большой планеты. Отныне в Солнечной системе только 8 больших планет.
Солнце
Ближайшая к Земле звезда. Карлик главной последовательности диаграммы Герцшпрунга-Рессела. Среднее расстояние от Земли(астрономическая единица или а.е.) 149.6 млн. км. Принадлежит к спектральному классу G2V. Центральное тело нашей планетной системы. Возникло около 4.7 млрд. лет тому назад вместе с другими планетами. Масса 1.99*1030 кг., радиус 696 тыс. км, средняя плотность 1.41 кг/м3, светимость 3.85*1026 Вт, эффективная температура 5779К. Период вращения (синодический) изменяется от 27 сут. на экваторе до 32 сут. у полюсов. Ускорение свободного падения в фотосфере 274 м/с2.
Общая структура:
энерговыделяющее ядро (от центра до расстояния в четверть радиуса), область лучистой теплопроводности (от 1/4 до 2/3 радиуса) и конвективная зона (последняя треть радиуса). Физические условия в этих внутренних слоях Солнца определяются теоретическими расчетами и проверяются методами гелиосейсмологии и нейтринной астрономии. Выше конвективной зоны начинаются непосредственно наблюдаемые внешние слои солнечной атмосферы, состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10 000 металлов вместе со всеми остальными химическими элементами. Атмосфера Солнца условно разделяется на три оболочки:
почти нейтрального водорода и однократно ионизованных металлов (фотосфера, толщина 200-300 км),
неоднородного слоя, в котором по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы (хромосфера, протяженность 10-20 тыс. км) и
разреженной изотермической короны, в которой все атомы ионизованы вплоть до самых глубоких электронных оболочек. Солнечная корона постепенно переходит в динамическое образование постоянно расширяющегося потока ионизованных атомов (в основном протонов, альфа-частиц и свободных электронов), образующих солнечный ветер, простирающийся за орбиты Земли и Марса.