Общие принципы теории относительности Эйнштейна

Автор: Пользователь скрыл имя, 19 Декабря 2010 в 18:05, реферат

Описание работы

Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.

Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.

Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром.

Содержание

ВВЕДЕНИЕ 3
1 Основные представления об общей теории относительности 4
1.1 Принцип эквивалентности и геометризация тяготения 5
1.2 Классические опыты по проверке ОТО 7
1.3 Черные дыры 9
1.4 Пульсар PSR 1913+16 и гравитационные волны 11
Заключение 16
Список использованных источников 17

Работа содержит 1 файл

Естествознание.doc

— 136.50 Кб (Скачать)

1.2 Классические опыты  по проверке ОТО

       В начале предыдущего раздела уже  отмечалось, что гравитационное поле влияет на движение не только массивных тел, но и света. В частности, фотон, распространяясь в поле Земли вверх, совершает работу против силы тяжести и поэтому теряет энергию. Как известно, энергия фотона пропорциональна его частоте, которая, естественно, тоже падает. Этот эффект — красное смещение — был предсказан Эйнштейном еще в 1907 году. Нетрудно оценить его величину. Работа против силы тяжести, очевидно, пропорциональна gh, где g — ускорение свободного падения, а h — высота подъема. Произведение gh имеет размерность квадрата скорости. Поэтому результат для относительного смещения частоты выглядит из соображений размерности так:

       

       где c = 3 . 1010 см/с — скорость света. При g≈103 см/с2, h~103 см относительное смещение ничтожно мало ~10-15. Неудивительно, что экспериментально красное смещение удалось наблюдать лишь спустя полвека, с появлением техники, использующей эффект Мёссбауэра. Это сделали Паунд и Ребка.

        Еще один эффект, предсказанный Эйнштейном на заре ОТО, — отклонение луча света  в поле Солнца. Его величину нетрудно оценить следующим образом. Если характерное, прицельное, расстояние луча от Солнца равно  ρ , то радиальное ускорение составляет  GM/ρ2 где G — ньютоновская гравитационная постоянная, а M — масса Солнца. За характерное время пролета  ρ/cрадиальная компонента скорости фотона изменится на  GM/(ρc)  и угол отклонения составит соответственно

       Удобно  ввести часто используемую в ОТО  характеристику массивного тела, так  называемый гравитационный радиус:

        Наивное использование полуклассических соображений действительно приводит к ответу

        Именно этот результат был получен  Эйнштейном в одном из первоначальных вариантов ОТО. Первая мировая война  воспрепятствовала проверке, неблагоприятной для теории. Окончательный, правильный результат ОТО вдвое больше:

       Гравитационный  радиус Солнца rg≈3 км, а прицельный параметр естественно сделать как можно ближе к обычному радиусу Солнца, который составляет 7 . 105 км. Таким образом, для луча света, проходящего вблизи поверхности Солнца, угол отклонения равен 1,75". Измерения, проведенные группой Эддингтона во время солнечного затмения 1919 года, подтвердили последнее предсказание. Это был подлинный триумф молодой общей теории относительности.

       И наконец, к числу классических тестов ОТО относится также вращение перигелия орбиты Меркурия. Замкнутые  эллиптические орбиты — это специфика  нерелятивистского движения в притягивающем  потенциале 1/r. Неудивительно, что в ОТО орбиты планет незамкнуты. Малый эффект такого рода удобно описывать как вращение перигелия эллиптической орбиты. Задолго до появления ОТО астрономы знали, что перигелий орбиты Меркурия поворачивается за столетие примерно на 6000" . Поворот этот в основном объяснялся гравитационными возмущениями движения Меркурия со стороны других планет Солнечной системы. Оставался, однако, неустранимый остаток — около 40" в столетие. В 1915 году Эйнштейн объяснил это расхождение в рамках ОТО.

        Из простых соображений размерности  можно ожидать, что поворот перигелия  за один оборот составляет

       где R — радиус орбиты. Аккуратный расчет в рамках ОТО для орбиты, близкой  к круговой, дает

       

       При радиусе орбиты Меркурия R≈0.6.108 км это дает 43" в столетие, снимая таким образом существовавшее расхождение. Ясно, кстати, чем выделяется в этом отношении Меркурий: это планета, ближайшая к Солнцу, планета с наименьшим радиусом орбиты R. Поэтому вращение перигелия орбиты у нее максимально.

1.3 Черные дыры 

       Однако  роль ОТО отнюдь не сводится к исследованию малых поправок к обычной ньютоновской гравитации. Существуют объекты, в которых  эффекты ОТО играют ключевую роль, важны стопроцентно. Это так называемые черные дыры.

        Еще в XVIII веке Митчел и Лаплас независимо заметили, что могут существовать звезды, обладающие совершенно необычным  свойством: свет не может покинуть их поверхность. Рассуждение выглядело  примерно так. Тело, обладающее радиальной скоростью v, может покинуть поверхность звезды радиусом R и массой M при условии, что кинетическая энергия этого тела mv2/2 превышает энергию притяжения GMm/R,т.е. при v2 > 2GM/R. Применение последнего неравенства к свету (как мы теперь понимаем, совершенно не обоснованное) приводит к выводу: если радиус звезды меньше чем

       то  свет не может покинуть ее поверхность, такая звезда не светит! Последовательное применение ОТО приводит к такому же выводу, причем, поразительно, правильный критерий количественно совпадает с наивным, необоснованным. Величина rg, гравитационный радиус, уже встречалась раньше (см. формулу (7)).

       Черная  дыра — вполне естественное название для такого объекта. Свойства его  весьма необычны. Черная дыра возникает, когда звезда сжимается настолько сильно, что усиливающееся гравитационное поле не выпускает во внешнее пространство ничего, даже свет. Поэтому из черной дыры не выходит никакая информация.  

       Занятно выглядит падение пробного тела на черную дыру. По часам бесконечно удаленного наблюдателя это тело достигает гравитационного радиуса лишь за бесконечное время. С другой стороны, по часам, установленным на самом пробном теле, время этого путешествия вполне конечно.

       Многочисленные  результаты астрономических наблюдений дают серьезные основания полагать, что черные дыры — это не просто игра ума физиков-теоретиков, а реальные объекты, существующие по крайней мере в ядрах галактик.

 

1.4 Пульсар  PSR 1913+16 и гравитационные  волны

       Нобелевская премия по физике за 1993 год была присуждена Халсу и Тейлору за исследование пульсара PSR 1913+16 (буквы PSR означают пульсар, а цифры относятся к координатам на небесной сфере: прямое восхождение 19h13h, склонение +16o). Исследование свойств излучения этого пульсара показало, что он является компонентом двойной звезды. Иными словами, у него есть компаньон, и обе звезды вращаются вокруг общего центра масс. Расстояние между этим пульсаром и его компаньоном составляет всего 1,8 . 106 км. Если бы невидимый компаньон был обычной звездой с характерным радиусом ~106 км, то наблюдались бы, очевидно, затмения пульсара. Однако ничего подобного не происходит. Подробный анализ наблюдений показал, что невидимый компонент — это не что иное, как нейтронная звезда.

       Существование нейтронных звезд было предсказано теоретически еще в 30-е годы. Они образуются в результате бурного гравитационного сжатия массивных звезд, сопровождающегося взрывом сверхновых. После взрыва давление в оставшемся ядре массивной звезды продолжает нарастать, электроны с протонами сливаются (с испусканием нейтрино) в нейтроны. Образуется очень плотная звезда с массой, несколько большей массы Солнца, но очень малого размера, порядка 10 — 15 км, не превышающего размер астероида. Несомненно, наблюдение нейтронных звезд уже само по себе является выдающимся открытием.

       Кроме того, тщательное исследование движения этой двойной звезды дало новое подтверждение  предсказания ОТО, касающегося незамкнутости  эллиптических орбит. Поскольку  гравитационные поля в данной системе  очень велики, периастр орбиты вращается несравненно быстрее, чем перигелий орбиты Меркурия, он поворачивается на 4,2o в год. Изучение этого и других эффектов позволило также определить с высокой точностью массы пульсара и нейтронной звезды. Они равны, соответственно, 1,442 и 1,386 массы Солнца. Но и это далеко не все.

       Еще в 1918 году Эйнштейн предсказал на основе ОТО существование гравитационного  излучения. Хорошо известно, что электрически заряженные частицы, будучи ускоренными, излучают электромагнитные волны. Аналогично, массивные тела, двигаясь с ускорением, излучают гравитационные волны — рябь геометрии пространства, распространяющуюся тоже со скоростью света.

       Следует заметить, что аналогия эта неполна (впрочем, как практически и всякая иная). Одно из отличий между электромагнитными и гравитационными волнами, имеющее довольно существенный характер, состоит в следующем. В отличие от случая электромагнитного поля плотность энергии гравитационного поля, гравитационной волны локально, в данной точке, можно всегда обратить в ноль подходящим выбором системы координат. В свое время, лет 60 — 70 назад, это обстоятельство рассматривалось как серьезная трудность теории. Затем, однако, смысл его был прояснен, и проблема была снята. Тем не менее, по-видимому, стоит остановиться на этом вопросе в данной, по существу научно-популярной, статье по следующей причине. В последние годы в нашей стране в некоторых публикациях, претендующих на серьезный научный характер, а также в научно-популярной литературе появились утверждения о том, что возможность обращения в ноль локальной плотности энергии гравитационного поля является коренным, принципиальным дефектом ОТО.

       На  самом же деле ничего страшного в  этом факте нет. Он — прямое следствие  принципа эквивалентности. Действительно, как уже упоминалось выше, переходя в систему, связанную со свободно падающим лифтом, мы обращаем в ноль напряженность гравитационного поля. Вполне естественно, что в этой системе равна нулю и плотность энергии гравитационного поля. (Это соображение принадлежит С.И. Литерату, учителю средней школы N 130 г. Новосибирска.)

       Отсюда, однако, вовсе не следует, что гравитационные волны — всего лишь игра ума, математическая абстракция. Это в принципе наблюдаемое  физическое явление. Так, например, стержень, находящийся в поле гравитационной волны, испытывает деформации, меняющиеся с ее частотой. Увы, оговорка «в принципе» отнюдь не случайна: масса любого объекта на Земле настолько мала, а движение его столь медленно, что генерация гравитационного излучения в земных условиях совершенно ничтожна, не видно сколько-нибудь реального способа зарегистрировать такое излучение. Существует ряд проектов создания детекторов гравитационного излучения от космических объектов. Однако и здесь реальных результатов до сих пор нет.

       Следует также сказать, что, хотя плотность энергии гравитационного поля в любой точке можно по своему желанию обратить в ноль выбором подходящей системы координат, полная энергия этого поля во всем объеме, полный его импульс имеют совершенно реальный физический смысл (конечно, если поле достаточно быстро убывает на бесконечности). Столь же наблюдаемой, хорошо определенной величиной является и потеря энергии системой за счет гравитационного излучения.

       Все это имеет самое прямое отношение  к пульсару PSR 1913+16. Эта система также должна излучать гравитационные волны. Их энергия в данном случае огромна, она сравнима с полной энергией излучения Солнца. Впрочем, даже этого недостаточно, чтобы непосредственно зарегистрировать эти волны на Земле. Однако энергия гравитационных волн может черпаться только из энергии орбитального движения звезд. Падение последней приводит к уменьшению расстояния между звездами. Так вот, тщательные измерения импульсов радиоизлучения от пульсара PSR 1913+16 показали, что расстояние между компонентами этой двойной звезды уменьшается на несколько метров в год в полном согласии с предсказанием ОТО. Любопытно, что потеря энергии двойной звездой за счет гравитационного излучения была впервые рассчитана Ландау и Лифшицем, они поместили этот расчет в качестве учебной задачи в первое издание своей замечательной книги —Теория поля», которое вышло в 1941 году.

       1.5 Гравитационные линзы  и коричневые карлики

       И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза. Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.

       

       Первая  наивная оценка может привести к  выводу о полной безнадежности наблюдения эффекта. Из простых соображений  размерности можно было бы заключить, что изображение окажется сдвинутым  на угол порядка rg /d, где rg — гравитационный радиус линзы, а d — характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d~10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан. Разрешение подобных углов практически невозможно.

        Однако такая  наивная оценка просто неверна. Это  следует, в частности, из исследования простейшего случая соосного расположения источника S, линзы L и наблюдателя O (рис. 2). Задача эта была рассмотрена  в 1924 году Хвольсоном (профессор Петербургского университета, автор пятитомного курса физики, широко известного в начале века) и спустя 12 лет Эйнштейном. Обратимся к ней и мы. Ясно, что для всякого расстояния d1 между источником и линзой, d — между линзой и наблюдателем для любого гравитационного радиуса rg линзы (звезды или скопления звезд) найдется такое минимальное расстояние ρ между лучом из источника и линзой, при котором этот луч попадает в приемник. При этом изображения источника заполняют окружность, которую наблюдатель видит под углом φ Углы φ и θ1 малы, так что φ=h/d,φ1=h/d а, кроме того, h=ρ Отсюда легко находим

Информация о работе Общие принципы теории относительности Эйнштейна