История философии. Теория Всеобщего

Автор: Пользователь скрыл имя, 13 Февраля 2012 в 16:55, контрольная работа

Описание работы

Человек - великое чудо творения, он создан «по образу и подобию Божию», а, следовательно, создан свободным, в нем как в зеркале отражен весь мир, а точнее, он сам является целым миром, маленькой моделью всего, что создано «от века». «Человек - микрокосм, в нем дана разгадка тайны бытия – макрокосма». Поэтому тот, кто хочет понять мир должен понять человека, в этом он видит одну из главных задач философии. Человек будучи «образом и подобием Божьим» не только свободен, он единственный из живых существ наделен способностью творить, т.е. создавать что-то новое, ранее не бывшее.

Содержание

Раздел 1. История философии
1.Философская концепция Н.А. Бердяева…………………………………………………3
1.1.Биография Н.А. Бердяева……………………………………………………...3
1.2. Идея личности…………………………………………………………………4
1.3. Идея свободы……………………………………………………………….…6
1. 4. Идея творчества………………………………………………………………8
Раздел 2. Теория Всеобщего
2. Научные гипотезы о происхождении и развитии Вселенной…………………………11
2.1. Историческое развитие представлений о Вселенной……………………….11
2.2. Происхождение Вселенной………………………………………………….12
2.2.1. Начало Вселенной………………………….………………………12
2.2.2. Взгляды на происхождение Вселенной…….……………………...13
2.3. Эволюция Вселенной. Возраст Вселенной………….……………….………23
Библиографический список………………………………………………………………26

Работа содержит 1 файл

Философия.doc

— 213.00 Кб (Скачать)

     Вначале вакуум обладал неимоверно большой  энергией и характеризовался высокой  степенью симметрии. Другими словами, не существовало различия между силами взаимодействия элементарных частиц. Электромагнитные, слабые и сильные  ядерные силы проявлялись всего лишь как части единого взаимодействия. В настоящее время энергия вакуума равна нулю и фундаментальные силы различаются по величине и типу, так что очень мало осталось от их первоначального единства. Каким же образом была нарушена исходная симметрия?

     По  мере того как Вселенная расширялась  и охлаждалась после Большого взрыва, вакуум проходил через быструю  последовательность изменений, называемых фазовыми переходами. Наиболее известны фазовые переходы, которые происходят в воде при ее охлаждении, когда она переходит из пара в жидкость и, наконец, в лед. Фазовые переходы можно описывать также в терминах нарушения симметрии: они часто переводят симметричные состояния в несимметричные. Например, кристалл - менее симметричное состояние по сравнению с жидкостью, поскольку жидкость "выглядит одинаковой" во всех направлениях, тогда как в кристаллической решетке различные направления не эквивалентны.

     Никто не знает точно, сколько фазовых  переходов произошло в "молодом" вакууме. Однако все они должны были протекать в течение первой секунды от начала расширения Вселенной. Так же, как и фазовые переходы в обычных средах, космологические фазовые переходы приводят к образованию дефектов. Внутри дефектов симметрия не нарушена, и ранний, более молодой вакуум остался в них как в ловушках. Различные теории элементарных частиц предполагают разные виды дефектов. Согласно некоторым теориям, дефекты должны существовать в виде поверхностей, в других - предсказываются линии или точки. Эти типы дефектов называют соответственно стенками доменов, струнами и монополями.

     Таким образом, космические струны являются всего лишь одним из трех возможных  типов "разрывов" в свойствах  вакуума. Почему же в теории образования  галактик выделяются именно они? Как  это ни странно, но одна из причин заключается в том, что струны не так ярко себя проявляют, как другие типы дефектов. В соответствии с эйнштейновским соотношением между массой и энергией высокоэнергетический вакуум должен обладать огромной массой. Поэтому дефекты могут оказывать чрезвычайно сильное влияние на эволюцию Вселенной. В настоящее время одна-единственная стенка домена, простирающаяся в современной Вселенной, может иметь гораздо большую массу, чем все вещество во Вселенной вместе взятое, и привести к большему окучиванию галактик, чем это есть на самом деле. Хотя одиночный монополь может "ускользнуть" от регистрации, теории предсказывают существование монополей в огромном количестве. Если бы они существовали, то Вселенная буквально "кишела" бы ими, и не заметить их было невозможно. Тем не менее, ни стенки доменов, ни монополи не обнаружены.

     Космические струны также никто не видел, но физики и не считают, что их можно непосредственно  наблюдать. Первая работа, посвященная  космическим струнам, была написана в середине 1970-х годов английским космологом Т. Кибблом. Он исследовал, как струны могли бы образоваться в ранней Вселенной, и в работе 1976 года обсуждал некоторые вопросы их эволюции. В России данную проблему активно разрабатывал Я.Б. Зельдович. Он считал, что с помощью струн можно было бы объяснить клочковатость распределения вещества во Вселенной. Физические свойства струн оказались очень привлекательными и уникальными. Теория космических струн быстро стала как бы центром притяжения для физиков, подобно тому, как сами струны якобы являются центром притяжения для звезд и галактик. На читателей обрушилась целая лавина работ по космическим струнам, хотя до сих пор не найдено прямое эмпирическое доказательство их существования. Но даже при отсутствии эмпирических данных физики смогли воссоздать более чем странные контуры свойств космических струн. Некоторые их свойства зависят от конкретной теории элементарных частиц, предсказывающей эти свойства, тогда как другие особенности являются общими для всех теорий.

     Космические струны представляют собой тонкие трубки из симметричного высокоэнергетического вакуума. У них нет концов, они либо образуют замкнутые кольца, либо простираются до бесконечности. С точки зрения физики сущность струн определяется энергией вакуума, который в них заключен. Струны с наиболее симметричным вакуумом, в котором все виды взаимодействий - сильное, слабое и электромагнитное - объединены в одно, наиболее тонкие и массивные. Это - самые интересные объекты для космологии, поскольку именно они могли бы приводить к образованию галактик. Толщина этих струн равна примерно 10-30 см. Они поразительно массивны: один сантиметр такой струны должен весить 1016 тонн. Натяжение в струнах под стать их массе. Это натяжение заставляет замкнутые петли из струн энергично осциллировать со скоростью, близкой к скорости света. Например, кольцо длиной в световой год совершит одно колебание за время, чуть большее года..

     Итак, еще одна экстравагантная гипотеза. Но сколь бы ни выглядела правдоподобной и привлекательной изложенная выше в общих чертах, следует относиться к ней трезво, отдавая полный отчет, что перед нами всего лишь очередное (старое, как мир!) овеществление математических отношений (то есть систематизированных в виде формул абстрактных понятий), наподобие уже рассмотренной выше субстанциализированной кривизны.

     Несмотря  на все вышеописанные теории, ученые понимали, что ответ на вопрос «откуда, собственно, появилась Вселенная» они  так и не получили. В надежде  уклониться от ответа на этот вопрос, некоторые  ученые предложили теорию так называемой "бесконечно пульсирующей Вселенной". В соответствии с этой теорией, Вселенная расширяется, а затем сжимается до сингулярности, затем вновь расширяется и снова сжимается. У нее нет ни начала, ни конца. Это снимает вопрос о происхождении Вселенной - она ниоткуда не возникает, а существует вечно.

     Но  и эта модель не лишена серьезных  недостатков. Прежде всего, до сих пор  никто не смог удовлетворительно  объяснить механизм пульсирования. Далее, в своей работе "Первые три минуты" С. Вайнберг утверждает, что каждый цикл расширения и сжатия должен приводить к определенным прогрессирующим изменениям во Вселенной, а это значит, что у Вселенной должно быть начало, иначе вся история Вселенной будет регрессом, растянувшимся на вечностью. Таким образом, перед нами вновь встает вопрос о происхождении Вселенной.

     Другой  попыткой уйти от вопроса о происхождении  Вселенной была предложенная английским астрофизиком П. Дэвисом модель "пульсирующей Вселенной с обращением хода времени". Согласно этой теории, Вселенная сначала расширяется, а затем сжимается до сингулярности, причем в начале каждого следующего цикла расширения-сжатия время поворачивает вспять, приводя, в конце концов, к сингулярности, с которой начинался предыдущий цикл. Согласно этой модели, прошлое становится будущим, а будущее - прошлым, так что понятие "начало Вселенной" лишается смысла. Этот сценарий дает некоторое представление о том, на какие ухищрения вынуждены пускаться ученые-космологи, чтобы как-то объяснить происхождение Вселенной.

     Наиболее  общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения: 1) свойства Вселенной одинаковы во всех ее точках (однородность) и направления (изотропность); 2) известным наилучшим описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь, кривизны с плотностью массы. Космологию, основанную на этих постулатах  называют релятивистской. Важным пунктом данной модели является ее нестационарность, это означает, что    Вселенная не может находиться в статическом, неизменном состоянии.

     Новый этап в развитии релятивистской космологии был связан с исследованиями русского ученого А.А. Фридмана (1888-1925), который математически доказал идею саморазвивающейся Вселенной. Работа А.А.Фридмана в корне изменила основоположения прежнего научного мировоззрения. По его утверждению космологические начальные условия образования Вселенной были сингулярными. Разъясняя характер эволюции Вселенной, расширяющейся начиная с сингулярного состояния, Фридман особо выделял два случая:

     а) радиус кривизны Вселенной с течением времени постоянно возрастает, начиная с нулевого значения;

     б) радиус кривизны меняется периодически: Вселенная сжимается в точку (ни во что, сингулярное состояние), затем снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку, и т.д.1

     На  этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так  называемого «красного смещения».       Красное смещение — это понижение  частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая вами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн. Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждает гипотезу об удалении их, т. е. о расширении Метагалактики — видимой части Вселенной.

     Составной частью модели расширяющейся Вселенной  является представление о Большом  Взрыве, происшедшем где-то примерно 12 —18 млрд. лет назад.

     Джордж  Лемер был первым, кто выдвинул концепцию «Большого взрыва»  из так называемого «первобытного  атома» и последующего превращения  его осколков в звезды и галактики. Конечно, со стороны современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея взрывоопасного первоначального движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

     Принципиально новый этап в развитии современной   эволюционной космологии связан с именем американского физика Г.А.Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины - один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А.Гамова образовался всоеобраэный космологический котел с температурой порядка трей миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца - отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва.

     Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую  пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудники Дльфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространенности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

     Ученые  стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович  выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц - протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий - горячей и холодной   и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

     В конце 60-х годов группа американских ученых во главе с Р. Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л. Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см.

     Примечательно, что будущие лауреаты Нобелевском премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны, для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

     Таким образом, в результате астрономических  наблюдений последнего времени удалось  однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории - о нейтронном составе «космического яйца» и горячем состоянии молодой Вселенной - проверку временем «выдержала «только «последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

Информация о работе История философии. Теория Всеобщего