Теория относительности Энштейна

Автор: Пользователь скрыл имя, 17 Февраля 2013 в 16:47, реферат

Описание работы

Актуальность выбранной темы обусловлена интересом ученых к понятиям пространства и времени и их характеристикам во все времена. Цель реферата – раскрыть представление А. Эйнштейна о движении тел и пространственно-временных характеристиках, описать суть специальной и общей теориях относительности (СТО и ОТО) и их роль в современной науке.

Содержание

Введение 3
1. Принцип относительности и понятия пространства и времени в классической механике
2. Специальная теория относительности и ее роль в науке
3. Понятие пространства и времени в специальной теории относительности
4. Общая теория относительности (ОТО)
Заключение
Список использованной литературы

Работа содержит 1 файл

Контрольная КСЕ.doc

— 142.50 Кб (Скачать)

Во втором законе Ньютона (F= та) масса считалась постоянной, но в теории относительности она зависит от скорости движения. Когда скорость тела приближается к скорости света, масса тела неограниченно растет и в пределе приближается к бесконечности. Поэтому, согласно теории относительности движения со скоростью, превышающей скорость света, невозможны. Движения со скоростями, сравнимыми со скоростью света, впервые удалось наблюдать на примере движения электронов в их ускорителях. Эксперименты с такими частицами действительно подтвердили предсказания теории об увеличении их массы с возрастанием скорости.

 

 

 

3. Понятие пространства  и времени в специальной теории относительности

В ходе разработки своей теории Эйнштейну пришлось пересмотреть прежние представления классической механики о пространстве и времени. Прежде всего, он отказался от ньютоновского понятия абсолютного пространства и времени, а также от определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета, и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Отсюда становится также ясным, что для Эйнштейна  основные физические понятия, такие, как пространство и время, приобретают ясный смысл только после указания тех экспериментальных процедур, с помощью которых можно их проверить. «Понятие, — пишет он, — существует для физики постольку, поскольку есть возможность в конкретном случае найти, верно оно или нет» [5]. Вместо абстрактных рассуждений об абсолютном движении в теории относительности рассматривают конкретные движения тел по отношению к конкретным системам отсчета, связанным с конкретными телами.

Другой важный результат теории относительности: связь обособленных в классической механике понятий пространства и времени в единое понятие пространственно-временной непрерывности (континуума).

Положение тела в пространстве определяется тремя его координатами х, у, z, но для описания его движения необходимо ввести еще четвертую координату — время. Таким образом, вместо разобщенных координат пространства и времени теория относительности рассматривает взаимосвязанный мир физических событий, который часто называют четырехмерным миром Германа Минковского (1864—1909), по имени немецкого математика и физика, впервые предложившего такую трактовку. Главная заслуга Минковского, по мнению Эйнштейна, состоит в том, что он впервые указал на формальное сходство пространственно-временной непрерывности специальной теории относительности с непрерывностью геометрического пространств Евклида.

Новые понятия и принципы теории относительности существенно изменили не только физические, но и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет. Особенно резкое сопротивление они встретили со стороны людей, придерживающихся так называемого здравого смысла, который в конечном итоге также ориентируется на доминирующие в обществе научные взгляды, почерпнутые из классической науки. Опираясь на повседневный опыт, трудно представить, что длина линейки или твердого тела в движущейся инерциальной системе сокращается в направлении их движения, а временной интервал увеличивается.

В связи с  этим представляет интерес парадокс близнецов, который нередко приводят для иллюстрации теории относительности. Пусть один из близнецов отправляется в космическое путешествие, а другой — остается на Земле. Поскольку в равномерно движущемся с огромной скоростью космическом корабле темп времени замедляется, и все процессы происходят медленнее, чем на Земле, то космонавт, вернувшись на нее, окажется моложе своего брата. Такой результат кажется парадоксальным с точки зрения привычных представлений, но вполне объяснимым с позиций теории относительности.

Необычные результаты, которые дает теория относительности, сразу же поставили вопрос об их опытной проверке. Сама эта теория возникла из электродинамики, и поэтому все эксперименты, которые подтверждают электродинамику, косвенно подтверждают также теорию относительности. Но кроме подобных косвенных свидетельств, существуют эксперименты, которые непосредственно подтверждают выводы теории относительности. Одним из таких экспериментов является опыт, поставленный французским физиком Арманом Физо (1819—1896) еще до открытия теории относительности. Он задался целью определить, с какой скоростью распространяется свет в неподвижной жидкости и жидкости, протекающей по трубке с некоторой скоростью. С помощью тщательных измерений, многократно повторенных разными исследователями, было установлено, что результат сложения скоростей соответствует здесь преобразованию Лоренца и, следовательно, подтверждает выводы специальной теории относительности. Наиболее выдающимся подтверждением этой теории был отрицательный результат опыта американского физика Альберта Майкельсона (1852—1931), предпринятый для проверки гипотезы о световом эфире. Согласно господствовавшим в то время воззрениям, все мировое пространство заполнено эфиром — гипотетическим веществом, являющимся источником световых волн. Сначала эфир уподоблялся упругой механической среде, а световые волны рассматривались как результат колебаний этой среды, то есть, как волны, сходные с появляющимися на поверхности жидкости, вызванные колебаниями частиц жидкости. Но эта механическая модель эфира в дальнейшем встретилась с серьезными трудностями, так как, будучи твердой упругой средой, эфир должен был оказывать сопротивление движению небесных тел, но ничего этого в действительности не наблюдалось. В связи с этим пришлось отказаться от механической модели, но существование эфира как особой всепроницающей среды по-прежнему признавалось.

Для того чтобы  обнаружить движение Земли относительно неподвижного эфира, Майкельсон решил измерить время прохождения светового луча по горизонтальному направлению движения Земли и направлению, перпендикулярному к этому движению. Если существует эфир, то время прохождения светового луча по горизонтальному и перпендикулярному направлениям должно быть неодинаковым; но никакой разницы Майкельсон не обнаружил. Тогда для спасения гипотезы об эфире Лоренц предположил, что в горизонтальном направлении происходит сокращение тела в направлении движения.

Полностью отрицательный  результат опыта Майкельсона  стал для Эйнштейна 18 лет позже решающим экспериментом для доказательства того, что никакого эфира как абсолютной системы отсчета не существует.

4. Общая теория  относительности (ОТО)

Классическая механика и СТО  формулируют закономерности физических явлений только для некоторого достаточно узкого класса инерциальных систем отсчета, не предлагая средств для реального выделения таких систем. Вполне закономерно возникла проблема, как распространить законы физики и на неинерциальные системы. После создания СТО Эйнштейн стал задумываться над этой проблемой применительно к принципу относительности: «Можем ли мы сформулировать физические законы таким образом, чтобы они были справедливыми для всех систем координат, не только для систем, движущихся совершенно произвольно по отношению друг к другу? Если это можно сделать, то... тогда мы будем в состоянии применять законы природы в любой системе координат» [4].

Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения — распространение принципа относительности не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер не только скорости, но и ускорению, то в таком случае выделенность класса инерциальных систем потеряет свой смысл и можно так формулировать физические законы, чтобы их формулировка имела смысл в отношении любой системы координат. Это и есть содержание общего принципа относительности.

«До Эйнштейна существовали две точки зрения на причины, порождающие инерциальные силы в ускоренных системах. Ньютон считал, что таким фактором является абсолютное пространство, а Э. Мах — действие общей массы Вселенной. Эйнштейн пошел по иному пути — распространил принцип эквивалентности сил инерции и сил тяготения (инертной и гравитационной масс) на оптические явления» [1].

Чтобы лучше  понять сущность общей теории относительности, рассмотрим пример с падением тела на поверхность Земли. Как мы объясняем обычно такие явления? Мы говорим, что Земля притягивает к себе тело согласно закону всемирного тяготения. Ньютон считал, что силы тяготения действуют мгновенно на расстоянии, и величина их убывает пропорционально квадрату расстояния. Такое предположение оказалось, однако, необоснованным, ибо мгновенные взаимодействия отсутствуют в природе. Всякое взаимодействие передается с определенной конечной скоростью в некотором поле.

Понятие о  поле возникло в связи с изучением  электромагнитных процессов и было введено в физику М. Фарадеем в виде силовых линий, передающих воздействие электрических или магнитных зарядов. Мы говорим, например, что магнит притягивает к себе железные опилки, движение которых происходит по направлению силовых линий. Аналогичным образом вводится понятие поля тяготения, которое существенно отличается от других физических полей тем, что его действие не зависит от природы и других свойств тел, кроме их массы.

До сих  пор рассматривалось движение тел по отношению к таким системам отсчета, которые находятся в покое или движутся друг относительно друга равномерно и прямолинейно. Такие системы –  инерциальные, или галилеевы, системы отсчета. Первое название отражает тот факт, что для подобных систем отсчета выполняется закон инерции, второе — свидетельствует, что этот закон был открыт впервые Галилеем и сформулирован в качестве первого закона механики Ньютоном. Теперь мы знаем, что относительно всех инерциальных, или галилеевых, систем отсчета законы движения тел описываются одинаково, то есть имеют ту же математическую форму и выражаются теми же уравнениями.

Возникает вопрос: а что произойдет, если вместо инерциальных систем взять другие системы отсчета, например, движущиеся с ускорением? Ответ на него дает общая теория относительности, которая называется так потому, что она обобщает частный, или специальный, принцип относительности, который мы рассматривали выше.

В специальной  теории относительности законы природы  считаются верными относительно инерциальных систем отсчета, то есть систем неподвижных или движущихся прямолинейно и равномерно. Но где можно обнаружить такие системы в природе? Первая мысль, которая возникает, попытаться связать такую систему с Землей, но она не совсем подходит для этой цели, ибо находится во вращательном, а не прямолинейном движении. Если поместить такую систему на Солнце, то она будет лучше подходить для этого, но и оно, хотя и медленно, но тоже движется. В конце концов, оказывается, что абсолютную инерциальную систему отсчета обнаружить не удается. Поэтому в теории относительности отказываются от понятия абсолютного движения и признают, что все движения совершаются относительно какой-либо определенной системы отсчета.

Как и при  построении классической механики, в  создании общей теории относительности помог мысленный эксперимент. А. Эйнштейн в своих работах обращается к воображаемому случаю с падением лифта. Представим себе, что лифт отрывается от троса и приходит в свободное падение. Это падение по-разному описывают внешний и внутренний наблюдатели. Поскольку падение происходит с постоянным ускорением, постольку наблюдатель, находящийся внутри лифта, будет рассматривать свою систему как инерциальную. Поэтому, если он, например, выпустит из своей руки часы и платок, то они не упадут на пол и останутся в покое. Если же он приведет в движение какое-либо тело, то оно будет двигаться равномерно и прямолинейно до тех пор, пока не столкнется со стенками лифта. Ведь лифт находится в инерциальном движении. С другой стороны, внешний наблюдатель замечает, что лифт падает и, значит, находится в ускоренном движении под влиянием силы тяжести. Оба наблюдателя рассуждают вполне последовательно, и каждый вправе отстаивать свою точку зрения. Но различие заключается в том, что они описывают явления и законы, которые управляют этими явлениями, в разных системах отсчета, или координат. Внутренний наблюдатель рассматривает их в инерциальной системе отсчета, а внешний — в неинерциальной, ускоренной, системе.

Если описание явлений и законы природы не должно зависеть от системы координат, то необходимо найти то связывающее звено, которое существует между инерциальными и неинерциальными системами отсчета. Таким звеном как раз и служит сила тяжести, которая с точки зрения внешнего наблюдателя заставляет двигаться лифт ускоренно. Эта сила образует поле тяготения, сходное с электромагнитным полем, но в то же время, отличающееся от него тем, что его действие не зависит от любых свойств и структуры тел, кроме их массы.

Слабые поля тяготения не оказывают существенного  влияния на свойства окружающего пространства. Поэтому в них можно пользоваться евклидовой геометрией и специальной теорией относительности. В сильных полях тяготения, как, например, в попе тяготения Солнца, приходится учитывать искривление световых лучей его полем, и поэтому применять новую, неевклидову геометрию и общую теорию относительности. Поскольку в этой теории решающую роль играет именно тяготение, ее называют новой теорией тяготения, чтобы подчеркнуть отличие от старой теории тяготения Ньютона.

Эйнштейн  так формулирует суть своей общей теории относительности: «Все тела отсчета равноценны для описания природы, в каком бы состоянии движения они не находились».

Теперь мы в состоянии по-иному взглянуть  на инерциальные и не-инерциальные системы отсчета. Различие между  ними выражается прежде всего в том, что если в инерциальных системах все процессы и описывающие их законы являются одинаковыми по своей форме, то в неинерциальных системах они происходят по-другому. В качестве примера рассмотрим, как представляется падение камня на Землю с точки зрения теории тяготения Ньютона и общей теории относительности. Когда задают вопрос, почему камень падает на Землю, то обычно отвечают, что он притягивается Землей. Но закон всемирного тяготения Ньютона ничего не говорит о самом механизме действия сил тяготения: как они распространяются, участвует ли в этом процессе некоторая промежуточная среда, передаются ли эти силы постепенно или мгновенно. Сам Ньютон говорил, что гипотез и произвольных допущений он «не измышляет» и поэтому оставил решение этих вопросов будущим поколениям ученых.

Эйнштейн, опираясь на результаты электродинамики, в которой вводятся представления о полях действия электромагнитных сил, стал рассматривать тяжесть как силу, действующую в определенном поле тяготения. С этой точки зрения, камень падает на Землю потому, что на него действует поле тяготения Земли.

Равенство инертной массы  тяжелой массе — один из важных результатов общей теории относительности. Она считает равноценными все системы отсчетов, или координат, а не только инерциальные системы.

Информация о работе Теория относительности Энштейна