Теория большого взрыва

Автор: Пользователь скрыл имя, 25 Февраля 2013 в 22:56, реферат

Описание работы

Не потерял интереса к изучению проблем космоса и Современный Человек. Но он смотрит уже немного глубже: ему не просто интересно что есть Вселенная сейчас – он жаждет знаний о том, что было когда Вселенная рождалась? Рождалась ли она вообще или она глобально стационарна? Как давно это было и как происходило? Для поиска ответа на все эти непростые ответы была отведена специальная ниша в астрономии – космология.

Содержание

ВВЕДЕНИЕ 3
1. СТОРИЧЕСКОЕ РАЗВИТИЕ ПРЕДСТАВЕНИЙ О ВСЕЛЕННОЙ 5
2. НАЧАЛО ВСЕЛЕННОЙ 7
2.1. Адронная эра 7
2.2. Лептонная эра 8
2.3. Фотонная эра или эра излучения 8
2.4. Звездная эра 10
3. СТРОЕНИЕ ГАЛАКТИК И ВСЕЛЕННОЙ 11
4. МОДЕЛЬ БОЛЬШОГО ВЗРЫВА 14
5. КРИТИКА СОВРЕМЕННОЙ ТЕОРИИ «БОЛЬШОГО ВЗРЫВА»" 19
ЗАКЛЮЧЕНИЕ 22
СПИСОК ИСПО

Работа содержит 1 файл

Реферат Концепции СЕ.doc

— 137.00 Кб (Скачать)

 

ОГЛАВЛЕНИЕ

 

 

ВВЕДЕНИЕ

Эта работа посвящена  проблеме изучения происхождения нашей  Вселенной.

Исследованием Вселенной  стал заниматься еще самый древний Человек. Небо было доступно для его обозрения – оно было для него интересным.

Не потерял интереса к изучению проблем космоса и  Современный Человек. Но он смотрит  уже немного глубже: ему не просто интересно что есть Вселенная  сейчас – он жаждет знаний о том, что было когда Вселенная рождалась? Рождалась ли она вообще или она глобально стационарна? Как давно это было и как происходило? Для поиска ответа на все эти непростые ответы была отведена специальная ниша в астрономии – космология.

Космология1  - это физическое учение2 о Вселенной как в целом, включающее в себя теорию всего охваченного астрономическими наблюдениями мира, как части Вселенной.

Космология попыталась дать ответы3 на эти вопросы. Была создана теория Большого Взрыва, а так же теории, описывающие первые мгновения рождения Вселенной, ее появление и структуризации.

Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально ни во что - спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность - её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, - и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью.

Следует отметить, что  вопрос о том, каким же было рождение Вселенной - "горячим" или "холодным", - не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был  далеко не праздным - ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной.

Цель моего реферата состоит в том, чтобы разобраться, что же  все-таки представляет собой Вселенная. В моем реферате поставлены следующие  задачи:

  • Изучить, как произошел тот темп развития Вселенной, начиная с момента «большого взрыва»?
  • Рассмотреть взгляды различных ученых, философов, политологов о том, как расширяется Вселенная?
  • Исследовать, почему Вселенная начала расширятся со скоростью, столь близкой к критической, которая разделяет модели с повторным сжатием и модели с вечным расширением?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. ИСТОРИЧЕСКОЕ РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ВСЕЛЕННОЙ

Еще на заре цивилизации, когда пытливый человеческий ум обратился  к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

Древнегреческий философ  Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей ни какими привычными наблюдениями и качествами. Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксиандр высказал идею изолированности Земли, в пространстве. Шаррообразность Земли утверждал другой пифагореец Парменид (VI-V в.в. до н.э.) Гераклид Понтийский (V-IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращения некоторых планет.

Французский философ  и ученый, физик, математик, физиолог Рене Декарт (1596-1650) создал теорию об эволюционной вихревой модели Вселенной на основе гелиоцентризма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII века его идея была необыкновенно смелой.

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и вероятность возникновение такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях.

Эйнштейн совершил радикальную  научную революцию, введя свою теорию относительности. Специальная или  частная теория относительности  Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально  новые космогологические следствие  общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли  удивительно точное подтверждение  в непосредственных наблюдениях  движений далёких галактик в эффекте «красного смещения» в их спектрах.

В 1929 г. Хаббл открыл замечательную  закономерность которая была названная  «законом Хаббла» или «закон красного смещения»: линии галактик смещенных  к красному концу, причем смещение тем  больше, чем дальше находится галактика.

 

    1. НАЧАЛО ВСЕЛЕННОЙ

Вселенная постоянно  расширяется. Тот момент, с которого Вселенная начала расширятся, принято  считать ее началом. Первую эру в  истории вселенной называют  “большим взрывом” или английским термином Big Bang.

На самом раннем этапе, в первые мгновения “большого взрыва” вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Под расширением Вселенной  подразумевается такой процесс, когда то же самое количество элементарных частиц и фотонов занимают постоянно  возрастающий объём. На начальном этапе  расширения Вселенной из фотонов  рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Эволюцию Вселенной принято разделять на четыре эры : адронную, лептонную, фотонную и звездную.

2.1. Адронная эра

Длилась примерно от4 t=10-6 до  t=10-3. Плотность порядка 1017 кг/м3 при T=1012…1013.


При очень высоких  температурах и плотности в самом  начале существования Вселенной  материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло из адронов, и поэтому ранняя эра  эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды  с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов. В первую миллионную долю секунды  эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда.

К моменту, когда возраст  Вселенной достиг одной десятитысячной секунды, ее энергии не хватало уже  для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг десятитысячной секунды, в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

2.2. Лептонная эра

Длилась примерно от5 t=10-3 до  t=101. К концу эры плотность порядка 107 кг/м3 при T=109.

 

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

   Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд, когда энергия  фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем  “реликтовыми”.

Всё пространство Вселенной  наполнилось огромным количеством  реликтовых электронных и мюонных  нейтрино. Возникает нейтринное море.

2.3. Фотонная эра или эра излучения

На смену лептонной  эры пришла эра излучения, как  только энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная  была заполнена фотонами. К концу  лептонной эры фотонов было в  два миллиарда раз больше, чем  протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по  энергии.

Для того чтобы можно  было сравнивать роль частиц и фотонов  во Вселенной, была  введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hv всех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность  энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз.  Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во Вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную  нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

2.4. Звездная эра

После “Большого  Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого  Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого  Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

 

 

    1. СТРОЕНИЕ ГАЛАКТИКИ И ВСЕЛЕННОЙ

Информация о работе Теория большого взрыва