Строение и эволюция звезд и планет

Автор: Пользователь скрыл имя, 15 Ноября 2011 в 23:51, реферат

Описание работы

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Содержание

I.Глава. Возникновение и эволюция звёзд.
1.Межзвёздный газ
1.1.Газовые туманности…………………………………………………………..…...6
1.2.Что происходит в центре галактики…………………………………………...….8
1.3.Газ в Большом Магелановом облаке……………………………………….....…11
2.Двойные звёзды
2.1.Открытие двойных звёзд……………………………………………………..…..13
2.2.Изменение параметров двойных звёзд…………………………………….…….15
2.3.Тепловые двойные звёзды………………………………………………….…….16
2.4.Рентгеновские двойные звезды…………………………………………….…....17
2.5.Примеры двойных звезд. ( a Центавра, Сириус.)………………………………...18
2.6.Стадии звёздной эволюции…………………………………………………....…..19
II.Глава. Происхождение солнечной системы.
1.Космогонические гипотезы происхождения солнечной системы
1.1Небулярные гипотезы………………………………………………………….….22
1.2.Гипотезы захвата………………………………………………………………….25
1.3.Другие гипотезы…………………………………………………………………..27
2.Происхождение солнечной системы
2.1.Происхождение колец планет-гигантов…………………………………………...…28
2.2.Происхождение планет-гигантов………………………………………...……….....32
2.3.Происхождение Плутона и других ледяных планет……………………………….33
2.4.Происхождение астеройдов…………………………………………………………35
2.5.Происхождение спутников……………………………………………………...…..38
2.6.Происхождение планет земной группы………………………………………...…..43
2.7.Происхождение комет………………………………………………………...……..51
2.8.Происхождение солнца………………………………………………………………53
2.9.Современные представления о строении солнечной системы…………………….54
III.Глава. Планеты земной группы .
1.Марс
1.1.Спутники Марса………………………………………………………………..…....64
1.2.Атмосфера и фиолетовый слой Марса………………..……………………..……..65
1.3.Температурный режим планеты Марс………………………………………..……66
1.4.Большая пылевая буря и её причины………………………………..……………..68
2.Венера…………………………………………………………………………………......69
3.Меркурий…………………………………………………………………………………..70
3.1.Температурный режим планеты……………………………………………..…….. 72
4.Земля…………………………………………………………………………………….…74
4.1.Движутся ли материк.………………………………………………………………..75
4.2.Тридцать движений земли……………………………………………………………76
4.3.Химический состав воздуха………………………………………………………….78
4.4.Единственный спутник земли – Луна……………………………………………….79

Список литературы…………

Работа содержит 1 файл

WORK MK 2.DOC

— 662.50 Кб (Скачать)

           Спектроскопический  анализ излучения ионов дал также подробную информацию о скоростях разреженного вещества внутри

             полости диаметром 10 св. лет, окружающей  центр. В некоторых частях полости скорости

             близки к скорости вращения кольца молекулярного газа — около 110 км/с. Часть облаков внутри этой области движется значительно быстрее — примерно со скоростью 250 км/с, а некоторые имеют скорости до 400 км/с.

           В самом центре обнаружено ионизованное вещество, движущееся со скоростями до 1000 км/с. Это вещество ассоциировано с интересным набором объектов вблизи центра полости, известным как IRS 16, который был обнаружен Беклином и Негебауэром во время поиска источников коротковолнового инфракрасного излучения. Большинство найденных ими очень небольших источников — это, вероятно, одиночные массивные звезды, но IRS 16 (16-й в их списке инфракрасный источник) представляет собой нечто иное: последующие измерения выявили в нем .пять ярких необычных компонентов.  Вся эта центральная область — как теплый газовый диск, так и внутренняя полость — является, по-видимому, сценой, где совсем недавно разыгралось какое-то бурное действие. Кольцо или диск газа, вращающиеся вокруг центра Галактики, должны постепенно превратиться в однородную структуру в результате столкновений между быстро и медленно движущимися сгустками вещества. Измерения доплеровского сдвига показывают, что разница между скоростями отдельных сгустков в кольце молекулярного газа достигает десятков километров в секунду. Эти сгустки должны сталкиваться, а их распределение сглаживаться в масштабах времени порядка 100 тыс. лет, т. е. за один-два оборота вокруг центра. Отсюда следует, что в течение этого промежутка времени газ подвергся сильному возмущению, возможно, в результате выделения энергии из центра или падения вещества с некоторого расстояния извне, и столкновения между сгустками должны быть еще достаточно сильными, чтобы в газе возникали ударные волны. Справедливость этих выводов может быть проверена путем поиска «следов» таких волн.

           Ударные волны могут быть идентифицированы по спектральным линиям горячих сильно возбужденных молекул. Такие молекулы были обнаружены при наблюдениях с Койперовской астрономической обсерватории; к ним относятся радикалы гидроксила — электрически заряженные фрагменты молекул воды, которые были с силой разорваны на части. Зарегистрировано также коротковолновое инфракрасное излучение горячих молекул водорода; оно указывает, что в некоторых местах температура облаков молекулярного газа достигает 2000 К — именно такая температура может создаваться ударными волнами. Каков источник плотных молекулярных пылевых облаков вблизи центра? Вещество содержит тяжелые элементы; это указывает на то, что оно было образовано в недрах звезд, где в результате элементы, такие как углерод, кислород и азот. Старые звезды расширяются и испускают огромное количество вещества, а в некоторых случаях взрываются как сверхновые. В любом случае тяжелые элементы выбрасываются в межзвездное пространство. Вещество облаков, находящихся вблизи центра Галактики, было, по-видимому, более основательно «обработано» внутри звезд, чем вещество, расположенное дальше от центра, поскольку вблизи центра особенно много некоторых редких изотопов, образующихся только внутри звезд.

           Не  все это вещество было создано ранее существовавшими звездами в непосредственной близости от центра. Возможно, часть облаков была притянута извне. Под влиянием трения и магнитных полей вещество постепенно стягивается по направлению к центру, поэтому в этой области оно должно скапливаться.. 
       

           1.3.Газ  в Большом Магеллановом Облаке. 

           Светящиеся  газовые туманности- одни из наиболее красивых и впечатляющих объектов во Вселенной. Туманность 30 Золотой Рыбы является самой яркой и большой  из газовых туманностей трех десятков галактик местной группы, включая нашу Галактику. Она имеет неправильную форму и огромные размеры. В то время как Большая туманность в созвездии Ориона видна невооруженным глазом в виде звезды с размытым изображением. Туманность 30 Золотой Рыбы занимает на небе площадь, сравнимую с диском солнца или полной луны, несмотря на то что она находится от нас в 100 с лишним раз дальше туманности Ориона. Ее диаметр составляет около 1000 световых лет, а туманности Ориона – всего три световых года. Газ туманности в значительной степени ионизирован: большая часть атомов потеряла по крайней мере по одному электрону. Оказывается, туманность 30 Золотой Рыбы содержит ионизированного газа в 1500 раз больше, чем туманность Ориона. Ионизация газа происходит под действием ультрафиолетового излучения, испускаемого массивными горячими молодыми звездами, находящимися в туманности.

                  Двадцатый век породил удивительные  науку  и технику, они позволяют  человеческой мысли проникать  в глубины Вселенной, поистине  за пределы известного мира. Наш кругозор и горизонты видимого мира расширились на столько, что человеческий разум, пытающийся сбросить с себя оковы земных предрассудков, едва способен овладеть им. Ученые, работающие в различных областях науки, пытаясь с помощью физических законов объяснить загадочные объекты, обнаруженные в наше время, убеждаются в том, что удивительная Вселенная, в которой мы живём, в основном ещё нам не известна. Если же какая-либо информация о Вселенной становится доступной, то часто даже самый дерзновенный ум оказывается не подготовленным к её восприятию в той форме, в какой её преподносит природа. Поражаясь необычности вновь открытых  небесных объектов, следует помнить, что за всю историю человечества, ни одна наука не достигала столь феноменально  быстрого развития, как наука об этих уникальных объектах. И всё это буквально за последние  десятилетия. Утоляя присущую человеку  неистощимую жажду познания, астрофизики неутомимо изучают природу этих небесных объектов, бросающих вызов человеческому разуму. 
       
       

2.Двойные звезды.

 

          Двойные звезды — это две (иногда встречается  три и более) звезды, обращающиеся вокруг общего центра тяжести (см. Рисунок). Существуют разные двойные звезды: бывают две похожие звезды в  паре, а бывают разные (как правило, это красный гигант и белый карлик). Но, вне зависимости от их типа, эти звезды наиболее хорошо поддаются изучению: для них, в отличие от обычных звезд, анализируя их взаимодействие можно выяснить почти все параметры, включая массу, форму орбит и даже примерно выяснить  характеристики близкорасположенных к ним звезд. Как правило, эти звезды имеют несколько вытянутую форму вследствие взаимного притяжения. Много таких звезд открыл и изучил в начале нашего века русский астроном С. Н. Блажко. Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление весьма распространенное.

           Принадлежность к двойной системе  очень сильно влияет на всю  жизнь звезды, особенно когда  напарники находятся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд.

           Двойные звезды удерживаются  вместе взаимным тяготением. Обе  звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром гравитации этих звезд. Это можно представить себе как точки опоры, если вообразить звезды сидящими на детских качелях: каждая на своем конце доски, положенной на бревно. Чем дальше звезды друг от друга, тем дольше длятся их пути по орбитам.  Большинство двойных звезд (или просто – двойных) слишком близки друг к другу, чтобы их можно было различить по отдельности даже в самые мощные телескопы. Если расстояние между партнерами достаточно велико, орбитальный период может измеряться годами, а иногда целым столетием или даже больше. Двойные звезды, которые возможно увидеть раздельно, называются видимыми двойными.  
     

         2.1.Открытие  двойных звезд 

         Как правило, двойные звезды на небе обнаруживаются визуально (первая и них была открыта еще  древними арабами) по изменению видимого блеска (тут опасно перепутать их с цефеидами) и близкому нахождению друг к другу. Иногда бывает, что две звезды случайно видны рядом, а на самом деле находятся на значительном расстоянии и не имеют общего центра тяжести (т.е. оптически двойные звезды), однако, это встречается

         довольно  редко.

               Невооружённым глазом вблизи Мицара (средней звезды в  ручке Большой Медведицы) видна  более слабая звезда – Алькор. Угловое  расстояние между Мицаром и Алькором около 12′, а линейное расстояние между  этими звёздами примерно 1,7 • 10 а. е. Это пример оптической двойной звезды: Мицар и Алькор рядом проектируются на небесную сферу, то есть, видны в одном направлении, но физически между собой не связаны. Если предположить, что Мицар и Алькор движутся вокруг общего центра масс, то период обращения составил бы около 2 • 106 лет! Обычно же звёзды, связанные силами тяготения (компоненты двойной системы)  
     
     

         образуют  более тесные пары, а периоды обращения  их компонентов не превышают сотен  лет, а иногда бывают значительно  меньше.

         Также, когда одна из звезд не видна, можно определить что звезда двойная по траектории: траектория видимой звезды будет не прямая, а извилистая; причем по характеристикам этой траектории можно вычислить вторую звезду, как, например, это было в случае с Сириусом.

         Если  какая-нибудь звезда совершает на небе регулярные колебания, это означает, что у нее есть невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда, обнаруженная с помощью измерений ее положения.  Спектроскопические двойные звезды обнаруживают по изменениям и особым характеристикам их спектров, спектр обыкновенной звезды, вроде Солнца, подобен непрерывной радуге, пересеченной многочисленными узкими нелями – так называемыми линиями поглощения. Точные цвета, на которых расположены эти линии, изменяются, если звезда движется к нам или от нас. Это явление называется эффектом Допплера.  Когда звезды двойной системы движутся по своим орбитам, они попеременно то приближаются к нам, то удаляются. В результате линии их спектров перемещаются на некотором участке радуги. Такие подвижные линии спектра говорят о том, что звезда двойная. Если оба участника двойной системы имеют примерно одинаковый блеск, в спектре можно увидеть два набора линий. Если одна из звезд гораздо ярче другой, ее свет будет доминировать, но регулярное смещение спектральных линий все равно выдаст ее истинную двойную природу.  В качестве примера рассмотрим звезду α Близнецов (Кастор). Расстояние между компонентами (A и B) этой системы примерно равно 100 а. е., а период обращения – около 600 лет. Звёзды A и B Кастора в свою очередь тоже двойные, но их двойственность невозможно обнаружить при визуальных фотографических наблюдениях, потому что компоненты находятся на расстоянии всего лишь нескольких сотых долей астрономических единиц (соответственно малы и периоды обращения). Двойственность таких тесных пар выявляется лишь в результате исследования их спектров, в которых наблюдается периодическое раздвоение спектральных линий. Эффект Доплера позволяет объяснить раздвоение линий тем, что мы видим суммарный спектр, получающийся от наложения спектров звёзд, которые движутся в разных направлениях (одна из них удаляется от нас, а другая приближается).

         Нередко двойственность тесных пар звёзд  можно выявить, изучая периодические  изменения их блеска. Если направление от наблюдателя на центр масс двойной звезды проходит вблизи плоскости орбиты, то наблюдатель видит затмения, при которых одна звезда на время заслоняет другую. Такие звёзды называются затменными двойными или затменными переменными.

         

         

         По  многократным наблюдениям затменной переменной звезды можно построить кривую блеска. Если сравнить звездные величины в минимуме и максимуме блеска. Измерив промежуток времени между двумя последовательными максимумами (или минимумами), найдём период изменения блеска. На рисунке 2 изображена кривая блеска типичной затменной переменной звезды β Персея, названной арабами Алголем (глаз Дьявола).

         Из  анализа кривых блеска затменных  переменных звёзд можно определить ряд важнейших физических характеристик  звёзд, например их радиусы.

         Измерение скоростей звезд двойной системы  и применение закона тяготения представляют собой важный метод определения  масс звезд. Изучение двойных звезд  – это единственный прямой способ вычисления звездных масс. Тем не менее, в каждом конкретном случае не так просто получить точный ответ.  
     
     
     
     
     
     

         2.2.Измерение  параметров двойных звезд. 

         Если  предположить, что закон всемирного тяготения постоянен в любой  части нашей галактики, то, возможно, измерить массу двойных звезд  исходя из законов Кеплера. По III закону Кеплера: ((m1+m2)P2)/((Mсолнца+ mЗемли)T2)=A3/a3, где m1 и m2 – массы звезд, P – их период обращения, T – один год, A – большая полуось орбиты спутника относительно главной звезды, a - расстояние от Земли до Солнца. Из этого уравнения можно найти сумму масс двойной звезды, то есть массу системы. Массу каждой из звезд по отдельности можно найти, зная расстояния каждой из звезд от их общего центра масс (x1,x2). Тогда x1/x2=m2/m1.Исследуя массы различных звезд, было выяснено, что их разброс не очень велик: от 40 масс Солнца до 1/4 массы Солнца.

         Остальные параметры двойных звезд (температура, яркость, светимость...) исследуются  так же, как и у обычных. 
     
     
     
     

Информация о работе Строение и эволюция звезд и планет