Автор: Пользователь скрыл имя, 24 Сентября 2011 в 21:21, реферат
В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов. Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным. Мы постараемся разобраться, как же повлияла квантовая механика на дальнейшее развитие науки.
ВВЕДЕНИЕ 3
ПРЕДМЕТ КВАНТОВОЙ МЕХАНИКИ 3
ИСТОРИЯ СТАНОВЛЕНИЯ КВАНТОВОЙ ТЕОРИИ 4
ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ БОРА 8
Соотношение неопределённостей Гейзенберга 10
ЗАКЛЮЧЕНИЕ 12
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРА 13
ОГЛАВЛЕНИЕ
В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов. Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным. Мы постараемся разобраться, как же повлияла квантовая механика на дальнейшее развитие науки. Рассмотрим основные аспекты и главные проблемы квантовой механики, которые имеют место быть в настоящее время.
Квантовая механика - теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.
Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления, в которых законы квантовой механики непосредственно проявляются в поведении макроскопических объектов.
Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.
Квантовая теория родилась в 1901 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых. Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными некоторое время, так как противоречили классической физике. В 1905 г. Альберт Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении долгого времени было известно, что он распространяется как непрерывные волны, при поглощении и излучении проявляет дискретные свойства.
Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом разряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален.
Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии ещё не давала систематической процедуры решения многих квантовых задач. Однако стало ясно, что классическая физика неспособна объяснить тот факт, что движущийся с ускорением электрон не падает на ядро, теряя энергию при излучении эл.-м. волн.
Новая существенная особенность квантовой теории проявилась в 1924 г., когда Луи де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. Таким образом в микромире стёрлась граница между классическими частицами и классическими волнами. В формулировке де Бройля частота, соответствующая частице, связана с её энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и её скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дж. Дэвиссоном и Лестером Х. Джермером в Соединенных Штатах и Джорджем Паджетом Томсоном в Англии.
В свою очередь это открытие привело к созданию в 1933 г. Эрнстом Руской электронного микроскопа. Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Эрвин Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая им в 1925 г., закончилась неудачей. Скорости электронов в теории Шрёдингера были близки к скорости света, что требовало включения в неё специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.
Одной из причин постигшей Шрёдингера неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка, однако такое сравнение не совсем корректно), о котором в то время было мало известно. Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории. В настоящее время волновая функция лежит в основе квантовомеханического описания микросистем, подобно уравнениям Гамильтона в классической механике.
Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента, так как по его соображениям микромир имеет принципиально иное устройство, чем макромир в виду особой роли постоянной Планка, несущественной в мире больших величин.
Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку её математический аппарат был им более знаком, а её понятия казались более "физическими"; операции же над матрицами - более громоздкими.
Вскоре
после того, как Гейзенберг и Шрёдингер
разработали квантовую
Сущность принципа дополнительности Н. Бора в физике такова. В любом опыте с микрообъектами наблюдатель получает информацию не о "свойствах объектов самих по себе", но о свойствах объектов в связи с конкретной ситуацией, включающей в себя, в частности, и измерительные приборы. Информацию об объекте, полученную при некоторых определенных условиях, надо рассматривать как дополнительную к информации, полученной при других условиях. Причем сведения, полученные при разных условиях, нельзя простым образом складывать, суммировать, комбинировать в некую единую картину; они отражают разные (дополняющие стороны) единой реальности, отвечающие исследуемому объекту. Свое прямое выражение принцип дополнительности находит, в частности, в идее корпускулярно-волнового дуализма и в соотношениях неопределенностей.
Нильс Бор говорил: "Термин "дополнительность" подчеркивает то обстоятельство, что в противоречащих друг другу явлениях мы имеем дело с различными, но одинаково существенными аспектами единого комплекса сведений об объекте". "В атомной физике слово "дополнительность" употребляют, чтобы характеризовать связь между данными, которые получены при разных условиях опыта и могут быть истолкованы лишь на основе взаимно исключающих друг друга представлений. Данные, полученные при разных условиях опыта, не могут быть охвачены одной единственной картиной; эти данные должны скорее рассматриваться как дополнительные. В квантовой физике данные об атомных объектах, полученные при помощи разных экспериментальных установок, находятся в своеобразном дополнительном отношении друг к другу. Действительно, следует признать, что такого рода данные, хотя и кажутся противоречащими друг другу при попытке скомбинировать их в одну картину, на самом деле исчерпывают все, что мы можем узнать о предмете".
Перечитаем еще раз внимательно слова Бора. Итак, данные о микрообъектах могут быть "наглядно истолкованы" лишь на основе "взаимно исключающих друг друга представлений". В этом смысле они не могут простым образом складываться, суммироваться, "не могут быть охвачены одной картиной". Разные данные находятся в "своеобразном" отношении друг к другу, для чего и применяется термин "дополнительность". Своеобразие отношения "дополнительности" согласуется с тем, что дополнительные друг по отношению к другу данные могут быть получены лишь "при разных условиях опыта".
Специфика квантовомеханических представлений с их несколько необычной логикой в известном смысле покоится на принципе дополнительности. Микрообъект не является ни корпускулой, ни волной; но в то же время мы используем для описания микрообъекта оба эти взаимно исключающие друг друга образы. Вдумаемся в эту ситуацию: образы корпускулы и волны используются для описания объекта, не являющегося ни корпускулой, ни волной, ни даже их симбиозом. Но взаимно исключающие друг друга образы используются как взаимно дополняющие образы, адекватно отражающие разные стороны объективной реальности, называемой микрообъектом. "Этот пункт логически важен, - писал Бор, - так как только то обстоятельство, что мы стоим перед выбором или следить за траекторией частицы, или же наблюдать интерференцию, позволяет нам избежать парадоксального вывода о том, что поведение электрона или фотона должно зависеть от наличия в экране щели, сквозь которую он заведомо не проходил".
Информация о работе Соотношение неопределённостей Гейзенберга