Синтетическая теория эволюции

Автор: Пользователь скрыл имя, 16 Января 2012 в 12:36, контрольная работа

Описание работы

Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

Содержание

Введение
1. Развитие синтетической теории эволюции……………………………....5
2. Становление синтетической теории эволюции…………………………10
3. Структура синтетической теории эволюции……………………………15
Заключение
Список использованной литературы

Работа содержит 1 файл

КСЕ.doc

— 87.50 Кб (Скачать)

Содержание

Введение

  1. Развитие синтетической теории эволюции……………………………....5
  2. Становление синтетической теории эволюции…………………………10
  3. Структура синтетической теории эволюции……………………………15

Заключение

Список использованной литературы 
 
 

 

Введение

     Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

       Несмотря на то, что в теории  Дарвина первостепенное значение в появлении новых видов уделяется экологическим факторам, после ее появления наибольшее развитие получило изучение генетических аспектов, таких как изменчивость и наследственность. Развитие этого направления привело к созданию так называемой синтетической теории эволюции (СТЭ), которая строится на принципах неодарвинизма. Важной особенностью последней является ориентация преимущественно на генетические механизмы возникновения эволюционных изменений. В ее наиболее традиционном виде фактически игнорируются экологические аспекты эволюции и все содержание эволюционного процесса сводится к отбору и распределению мутаций в популяциях. Несмотря на то, что в синтетической теории эволюции естественный отбор признается одним из главных факторов эволюции, подлинной причиной возникновения и закрепления тех или иных признаков считается не отбор, а рекомбинация генов.

       Согласно общепринятому мнению, синтетическая теория эволюции  явилась новым шагом по сравнению  с оригинальной теорией Дарвина  и представляет собой синтез взглядов Дарвина и данных современной генетики, экологии, палеонтологии и других биологических дисциплин. Однако исторический анализ убедительно показывает, что синтетическая теория не является самостоятельной теорией эволюции. Это лишь одно из направлений развития теории эволюции Дарвина, связанное с более глубоким изучением генетических факторов эволюции. Реальный синтез новых эволюционных данных возможен лишь после того, как будут в достаточной степени изучены не только генетические, но и экологические факторы эволюции, составляющие основу эволюционной теории Дарвина.

       Существует несколько причин  развития преимущественно генетических  факторов эволюции после появления  теории Дарвина. Одна из них  обусловлена тем, что изучение  экологических факторов связано с исследованием сложных и многообразных взаимоотношений организмов с окружающей средой и друг с другом. Во времена Дарвина экология была еще слабо развита, и экологические механизмы эволюции в теории Дарвина были по преимуществу умозрительными. Потребовалось много времени и усилий для того, чтобы получить фактическое подтверждение теоретических построений Дарвина. Лишь в настоящее время экология достигла такого уровня исследований, при котором открываются возможности объективного анализа экологических факторов эволюции. Генетика по сравнению с экологией более узкая научная дисциплина и имеет возможность быстро решать многие стоящие перед ней проблемы с помощью экспериментальных методов исследования. Другая важная причина доминирования генетических исследований в эволюционной биологии состоит в том, что после появления теории Дарвина, критика ее была направлена, прежде всего, на вопросы изменчивости и наследственности. Острота этой проблемы привлекла широкое внимание ученых и обусловила быстрое развитие эволюционно-генетических исследований. 

 

  1. Развитие синтетической  теории эволюции

     Критика теории Дарвина ранними генетиками. Одно из главных возражений против теории Дарвина касалось проблемы накопления индивидуальных изменений в процессе естественного отбора. Через несколько лет после выхода в свет труда Дарвина шотландский инженер Ф. Дженкин заявил, что случайные изменения растворяются в процессе скрещивания и не могут сохраняться и накапливаться в популяции. Дженкин исходил из того, что возникшее случайно наследственное изменение, которое может быть поддержано отбором, — явление единичное. Вероятность встречи двух особей с одинаковыми изменениями чрезвычайно мала. Поэтому, если один из родителей приобрел новый признак, то у его детей количественное выражение этого признака уменьшится в два раза, у внуков в четыре раза и т.д. В результате новый признак исчезнет и не сможет быть использован отбором.

       Решению этой проблемы способствовало  развитие экспериментальных исследований  наследственной изменчивости как фактора эволюции и обобщение генетиками двух основных открытий: установления корпускулярной природы наследственных факторов (генов) и выявления мутационной изменчивости. Обнаруженный еще в 1865 г. Г. Менделем факт несмешиваемости признаков при скрещиваниях снимало одно из главных возражений классическому дарвинизму — гипотезу о «слитной наследственности». К. Пирсон в 1909 г. математически строго доказал, что наследуемость признаков по менделевскому принципу снимает опаснейшее для Дарвина возражение Дженкина. Один ген не разводится другим. В гетерозиготном состоянии они сосуществуют, оставаясь раздельными. Мутация не «заболачивается», как писал Дженкин, скрещиванием, и новый признак всегда имеет шанс проявиться в фенотипе в неизменном состоянии.

       Однако развитие генетики на  первых порах способствовало  углублению кризиса эволюционной  теории Дарвина. Многие основоположники  генетики (Г. де Фриз, У. Бэтсон, В. Иогансен) не сумели правильно  оценить важнейшее значение своих  открытий для дальнейшего развития эволюционной теории. Напротив, они резко противопоставили данные своих исследований дарвинизму.

       В наиболее резкой форме против  постепенного изменения признаков  в процессе естественного отбора  выступил Г. де Фриз в своей  «Мутационной теории». На основании экспериментальных исследований изменчивости у сорного растения энотеры Г. де Фриз сделал совершенно правильные выводы о том, что мутации возникают скачкообразно, однажды возникшая мутация устойчива, мутации возникают ненаправленно и одна и та же мутация может возникать повторно. Но из этих наблюдений де Фриз сделал неправильные эволюционные заключения. По его теории эволюционные преобразования совершаются не постепенно в процессе накопления мелких мутаций, как это утверждал Дарвин, а скачкообразно. Время от времени под действием пробудившейся «созидательной силы» природы тот или иной вид, дотоле длительное время пребывавший в неизменном состоянии, испытывает мутацию и практически внезапно превращается в новый вид, который теперь сразу и на столь же долгое время, как и его предшественник, становится постоянным. По де Фризу, видообразование совершается независимо от естественного отбора. Для этого не нужно ни ряда поколений, ни борьбы за существование, ни удаления негодных особей, ни подбора. При этом борьба за существование, в отличие от точки зрения Дарвина, не увеличивает видовое разнообразие, а сокращает его за счет уничтожения неудачных мутантов.

       Другой известный генетик, автор  концепции «гибридогенеза» Дж. Лотси  полагал, что видообразование  есть всего лишь процесс перекомбинирования генов при скрещиваниях, а не их изменения путем мутаций, а уж тем более не результат постепенного накопления мелких мутаций отбором. В его гипотезе гибридогенеза абсолютизировалась эволюционная роль комбинативной изменчивости.

       Серьезным выступлением против  дарвинизма на ранних порах  развития экспериментальной генетики  были выводы датского исследователя  В. Иогансена из опытов по  изучению роли отбора в «чистых  линиях» у фасоли. Проведя отбор  семян по их массе и размерам  в продолжение семи поколений, Иогансен обнаружил, что в пределах генетически однородного материала (одной чистой линии) в процессе отбора сохраняется средняя норма, т.е. средние массы и размеры семян не сдвигаются ни в сторону их увеличения, ни в сторону уменьшения. Когда отбор проводился в популяциях, смешанных из чистых линий, результатом его действия оказывалось только выделение этих линий без их генетического изменения. Выводы Иогансена о консервативной функции отбора были подтверждены другими авторами на инфузориях, гидре, тлях, ракообразных и на многих растениях. Влияние работ Иогансена на умы биологов было столь значительным, что на них ссылались как на безупречное доказательство ограниченности значения отбора, а тем самым и ошибочности дарвиновской концепции причин эволюции.

       Преувеличение ранними генетиками  отдельно взятых факторов эволюции  в качестве ведущих привело  к ошибочному представлению о  ее причинах и механизме, к  частичному или полному отрицанию  творческого характера борьбы  за существование и отбора и даже к пессимизму в отношении самой идеи эволюции. В действительности, спустя четверть века после начала кризиса стало ясно, что противопоставление генетики дарвинизму было искусственным. Во-первых, открытие мутаций свидетельствовало о наличии материала для отбора и, как выражался Дарвин, снимало покров с темного вопроса о причинах наследственной изменчивости. Во-вторых, относительная стабильность генов обеспечивала закрепление результатов действия отбора.

       Союз генетики и дарвинизма. Кризис  продолжался до тех пор, пока новые факты позволили сделать ряд важнейших обобщений, которые вывели эволюционную теорию на путь синтеза дарвинизма с генетикой. Крупным шагом в изучении закономерностей наследования были работы Т. Моргана и его сотрудников, заложившие основы хромосомной теории наследственности. В итоге этих исследований были углублены фундаментальные понятия классической генетики (понятие гена, генотипа и фенотипа), описаны разнообразные типы генных и хромосомных мутаций, открыты явления рекомбинации при кроссинговере.

       Работы Иогансена и других  авторов показали, что особенно  важным для эволюционной теории  было дальнейшее изучение мутационного  процесса в природных популяциях. Дарвинизм мог беспрепятственно  развиваться только на основе  более глубокого познания наследственной изменчивости и воздействия на нее отбора. Многолетними исследованиями на львином зеве и других растениях было доказано существование в популяциях множества мелких мутаций, охватывающих широкий спектр преимущественно физиологических признаков. В некоторых линиях львиного зева частота малых мутаций достигала относительно большой величины (до 5%).

       Мутации были получены и в  лаборатории воздействием радиевых  и рентгеновских лучей на дрожжах  (Г.А. Надсон, Г.С. Филиппов) и на  дрозофиле (Г. Мёллер). Затем рентгено-мутации удалось обнаружить на растениях, в частности на пшенице (Л.Н. Делоне, А.А. Сапегин). Данные этих экспериментов доказали, что мутации вызываются внешними причинами и не направлены в сторону приспособления, т.е. в этом смысле носят случайный характер.

       Можно подвести два итога, вытекающие  из развития генетики к концу  20-х годов 19-го столетия. Во-первых, изучение закономерностей наследования  полностью утвердило теорию дискретной  наследственности и окончательно  ниспровергло гипотезу «слитной наследственности». Во-вторых, данные по мутационной изменчивости обосновали дарвиновское положение о неопределенной наследственной изменчивости как поставщике материала для естественного отбора.

       Теория дискретной наследственности  Менделя и хромосомная теория Моргана сами по себе не были связаны с эволюционным учением. Лишь со второй половины 20-х годов начинает оформляться союз генетики с дарвинизмом. В результате этого возникает новая отрасль биологии — эволюционная генетика и начинает формироваться синтетическая теория эволюции [2]. 

 

  1. Становление синтетической  теории эволюции

     Исходным  моментом для образования тесного  контакта между эволюционным учением  и современной генетикой явились  классические работы Дж. Г. Харди «Менделевские  соотношения в смешанной популяции» (1908), С.С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926), Р.А. Фишера «Генетическая теория естественного отбора» (1930), Ф.Г. Добжанского «Генетика и происхождение видов» (1937), Дж. Хаксли «Эволюция. Современный синтез» (1942). В этих работах были сформулированы положения и принципы, развитие которых и составляет современное содержание синтетической теории эволюции.

       Эволюционно-генетические исследования  привели к выявлению нескольких взаимосвязанных эволюционных факторов, с помощью которых можно, по мнению сторонников синтетической теории, объяснить зарождение и формирование новых видов.

       Мутационный процесс (1-й эволюционный  фактор). Естественно протекающий  мутационный процесс все время поставляет новый материал, обогащая тем самым генофонд популяций, делая его все более разнообразным. При этом большая часть мутаций находится в рецессивном состоянии, скрывается в гетерозиготах и не проявляется в фенотипе. Именно эти скрытые в генотипе мутации имеют, с позиций эволюционной генетики, наибольшее значение для эволюции. Они не проявляются в фенотипе, не подвергаются отбору и накапливаются в популяции. Мутационный процесс является случайным и сам по себе не создает новых признаков. В популяциях возникают самые разнообразные мутации, изменяющие исходные признаки и свойства в различных направлениях, осуществляя в классической форме «неопределенную изменчивость» Ч. Дарвина. При этом, согласно правилу Харди-Вайнберга, описывающему частоту встречаемости генов в равновесной популяции свободно скрещивающихся организмов, при отсутствии возмущающих воздействий, таких как повторное мутирование одного и того же гена, отбор или избирательная миграция, т.е. привнесение или убыль аллеля в панмиктической популяции, концентрация генов из поколения в поколение остается неизменной. Поэтому необходимы дополнительные эволюционные факторы, способствующие направленному накоплению мутаций и изменению концентрации генов.

       Колебание численности популяций,  волны жизни (2-й эволюционный фактор). Изменение численности популяций рассматривалось в эволюционной генетике в качестве эволюционного фактора, выводящего ряд генотипов совершенно случайно и ненаправленно в качестве «кандидатов» на роль новых звеньев в протекающих эволюционных явлениях и процессах и обогащающих основной генофонд населения вида. Еще в 1905 г. С.С. Четвериков опубликовал чрезвычайно интересную работу под заглавием «Волны жизни». В этой работе им было показано, что популяции живых организмов всегда подвержены количественной флуктуации численности и эти «волны жизни» имеют важное эволюционное значение. Основную роль «волн жизни» С.С. Четвериков видел в том, что этот флуктуирующий (и в этом смысле случайный) фактор влияет на направление и интенсивность давления отбора. В дальнейшем его стали рассматривать преимущественно как фактор, влияющий на случайные колебания концентраций разных генотипов и мутаций в природных популяциях.

Информация о работе Синтетическая теория эволюции