Автор: Пользователь скрыл имя, 16 Декабря 2011 в 13:31, реферат
Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих произво
Явление радиоактивности
было открыто в 1896 году французским
ученым Анри Беккерелем. В настоящее
время оно широко используется в
науке, технике, медицине, промышленности.
Радиактивные элементы естественного
происхождения присутствуют повсюду
в окружающей человека среде. В больших
объемах образуются искусственные радионуклиды,
главным образом в качестве побочного
продукта на предприятиях оборонной промышленности
и атомной энергетики. Попадая в окружающую
среду они оказывают воздействия на живые
организмы, в чем и заключается их опасность.
Для правильной оценки этой опасности
необходимо четкое представление о масштабах
загрязнения окружающей среды, о выгодах,
которые приносят производства, основным
или побочным продуктом которых являются
радионуклиды, и потерях, связанных с отказом
от этих производств, о реальных механизмах
действия радиации, последствиях и существующих
мерах защиты.
В массовом сознании населения доминирует
настороженное отношение к производствам,
деятельность которых приводит к образованию
радиоактивных изотопов и в первую очередь
к предприятиям ядерного цикла. Этому
способствуют как объективные (крупные
аварии), так и субъективные (некомпетентность,
искаженная картина в средствах массовой
информации) факторы. При этом не принимаются
во внимание два обстоятельства.
Первое - это необходимость сравнительного
подхода. Например, ценой за использование
автомобиля являются десятки тысяч людей,
ежегодно погибающих в авариях, еще большее
количество получает травмы. Происходит
загрязнение окружающей среды выхлопными
газами автомобилей, особенно в густонаселенных
городах. И это далеко не полный перечень
негативных последствий от использования
автомобильного транспорта.
Второе обстоятельство — это экономическая
и технологическая необходимость использования
атомной энергии в современном мире.
Привлекательность использования АЭС
связана с ограниченностью и постоянным
ростом стоимости энергоносителей для
тепловых электростанций, меньшими радиоактивными
и значительно более низкими химическими
загрязнениями окружающей среды, гораздо
меньшими объемами транспортных перевозок
у предприятий ядерного цикла, отнесенными
к единице производимой в конечном счете
электроэнергии, по сравнению с аналогичными
показателями для предприятий топливного
цикла.
Альтернативы использованию АЭС в глобальной
экономике в настоящее время нет, а в обозримом
будущем она может появиться только со
стороны термоядерных установок.
Первая в мире опытно-промышленная АЭС
мощностью в 5 МВт была пущена в СССР 27 июня 1954 г.
в г. Обнинске. В последующий период производство
электроэнергии на АЭС быстро росло и
в настоящее время в развитых странах
они превратились в основного поставщика
электроэнергии.
Работа предприятий ядерного цикла в
режиме нормальной эксплуатации не наносит
человеку сколько-нибудь заметного вреда
и значительно безопаснее последствий
других видов деятельности. Аварии на
АЭС значительно увеличивают экологическую
угрозу, но не в большей степени, чем аварии
на крупных химических производствах,
бесконтрольное использование пестицидов
и минеральных удобрений, аварии на транспорте
и т.д.
Следует также иметь в виду, что радиация,
связанная с нормальным развитием ядерной
энергетики, составляет лишь малую долю
радиации, порождаемой деятельностью
человека. Значительно большие дозы мы
получаем от других источников, вызывающих
меньше нареканий. Применение рентгеновских
лучей в медицине, сжигание угля, использование
воздушного транспорта, пребывание в хорошо
герметизированных помещениях могут привести
к значительному увеличению уровня облучения.
Отметим, что и зарождение жизни на Земле
и ее последующая эволюция протекали в
условиях постоянного воздействия радиации.
Хорошее знание свойств радиации и ее
воздействия позволяет свести к минимуму
связанный с ее использованием риск и
по достоинству оценить те огромные блага,
которые приносит человеку применение
достижений ядерной физики в различных
сферах
Как действует радиация на человека и окружающую среду? Как он возникает? Это одни из многих сегодняшних проблем, которые приковывают к себе внимание людей.
Радиация действительно опасна; в больших дозах она приводит к поражению тканей, живой клетки, в малых - вызывает раковые явления и способствует генетическим изменениям. Однако опасность представляют вовсе не те источники радиации, о которых больше всего говорят. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю, наибольшую дозу человек получает от естественных источников - от применения рентгеновских лучей в медицине, во время полет на самолете, от каменного угля, сжигаемого в бесчисленном количестве различными котельными и т.д.
Радиация существовала на Земле задолго до зарождения жизни. Человек в чрезвычайно малой степени тоже радиоактивен.
Человек подвергается двум видам облучения: внешнему и внутреннему. Дозы облучения сильно различаются и зависят от того, где люди живут.
Единицы измерения
В качестве единицы гамма-излучения принят рентген (р), т.е. такая доза излучения, при которой в 1 см 53 0 сухого воздуха при нормальных условиях образуется приблизительно 2 млрд. пар ионов, несущих одну электростатическую единицу заряда каждого знака.
За единицу активности принято одно ядерное превращение в секунду. В целях сокращения обозначения пользуется термин "распад в секунду" (расп./с.). В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля широко применялась внесистемная единица - кюри (Ки).
Концентрация радиоактивных веществ обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/кг и т.п. (удельная активность), на единицу объема - Ки/м, мКи/л, Бк/см и т.п. (объемная концентрация) или на единицу площади - Ки/км 52 0, мКи/см 52 0, ПБк/м 52 0 и т.п.
Доза излучения (поглощенная доза) - это энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. С увеличением времени облучения она растет. При одинаковых условиях облучения зависит от состава вещества. Поглощенная доза нарушает физиологически процессы и приводит к лучевой болезни различной степени тяжести. В системе СИ обозначается единицей - грей (Гр). 1 грей - величина, при которой 1 кг облучаемого вещества поглощает энергию в 1 Дж (джоуль), следовательно 1 Гр = 1 Дж/кг.
Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия. Мощность дозы (мощность поглощенной дозы) - приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ - грей в секунду, за одну секунду в веществе создается доза излучения 1 грей.
На практике для оценки поглощенной дозы излучения до сих пор широко используется внесистемная единица мощности поглощенной дозы - рад в час(рад/ч) или рад в секунду (рад/с).
Эквивалентная
доза. Это понятие введено для
количественного учета
Зиверт равен одному грею, деленному на коэффициент качества. При Q=1 получаем:
1 Гр 1 Дж/кг 100 рад
1 Зв = ---- = ------- = -------- = 100 бэр.
Q Q Q
Бэр (биологический эквивалент рентгена) - это внесистемная единица зквивалентной дозы. Бэр - такая поглощенная доза любого излучения, которая вызывает то же биологический эффект, что и один рентген гамма-излучения. Поскольку коэффициент качества бета- гамма-излучений равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении
1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.
Строение атома и радиоактивность.
Как замечено выше атом имеет сложное строение и состоит из положительно заряженного ядра, где сосредоточено 99,95% массы атома, и вращающихся вокруг него электронов.
Дальнейшие исследование показали, что ядро атома также имеет сложное строение и состоит из протонов (ядер водорода) и нейтронов.
Протон обладает единицей положительного заряда, а атомный вес его примерно равен единице. Нейтрон является нейтральной частицей, масса которого примерно равна массе протона.
Массовым числом называется целое число, ближайшее к атомному весу изотопа данного химического элемента. Массовое число равно общему числу частиц (протонов и нейтронов), входящих в состав ядра. Элементы, обладающие одинаковыми химическими свойствами, но разными массовыми числами (или соответственно разными атомными весами), называются изотопами. Очевидно, что ядра изотопов одного и тоже элемента состоят из одинакового числа протонов и разного числа нейтронов.
Между частицами, входящими в состав ядра, т.е. между протонами и протонами, нейтронами и нейтронами, протонами и нейтронами действуют ядерные силы притяжения. Особенность этих сил состоит в том, что они чрезвычайно велики на расстояниях порядка размера ядра (10 5-13 0 см) и резко уменьшаются с увеличением расстояния между частицами. Помимо ядерных сил притяжения между одноименно заряженными частицами ядра - протонами действуют кулоновские силы отталкивания. У большинства химических элементов ядерные силы притяжения превосходят кулоновские силы отталкивания, чем и обусловливается устойчивость ядер этих элементов.
Однако у тяжелых элементов, ядра которых состоят из большого числа частиц, ядерные силы притяжения уже не способны скомпенсировать кулоновские силы отталкивания. В этом случае начинаются процессы самопроизвольного перехода ядер из менее устойчивого состояния в более устойчивое. Это явление получило название радиоактивность.
В процессе радиоактивного распада ядра атомов испускают либо альфа-частицу, либо Бетта-частицу, причем, как правило, все ядра данного радиоактивного изотопа испускают частицы одного рода. Альфа- частицы - поток ядер гелия - состоят из двух протонов и двух нейтронов. Таким образом , альфа-частица обладает двумя единицами положительного заряда, а ее атомный вес равен 4. Все ядра данного радиоактивного изотопа испускают альфа-частицы вполне определенной энергии. Энергия альфа-частицы, испускаемых известными в настоящее время радиоактивными изотопами, лежит примерно в пределах 3-9 Мэв.
Бета-частицы - поток электронов или позитронов. Максимальная энергия бетта-спектра у известных в настоящее время радиоактивных изотопов лежит в пределах от нескольких десятков килоэлектронвольт до 3- 3,5 Мэв.
В некоторых случаях дочернее ядро, образующееся в результате радиоактивного распада, может оказаться в возбужденном состоянии. Переход ядра из возбужденного состояния в невозбужденное сопровождается испусканием гамма-излучения. Энергия гамма-квантов, испускаемых в процессе радиоактивного распада, лежит в пределах от нескольких десятков килоэлектронвольт до 3-4 Мэв.
Источники внешнего облучения
Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины всего внешнего облучения (0,65 мЗв/год), получаемого населением. Земная радиация, дающая ориентировочно 0,35 мЗв/год внешнего облучения, исходит в основном от тех пород, которые содержат калий-40, рубидий-87, уран-238, торий-232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0,3 до 0,6 мЗв/год. Есть такие места, где эти показатели во много раз выше.
Внутреннее облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мЗв/год за счет калия-40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца-210, полония-210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения. Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радон. Это невидимый, не имеющий ни вкуса, ни запаха тяжелый газ. Он в 7,5 раза тяжелее воздуха.
Значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм человека вместе с вдыхаемым воздухом.
За последние
десятилетие человек усиленно занимался
проблемами ядерной физики. Он создал
сотни искусственных
Атомная энергетика вносит малый вклад в суммарное облучение населения, если все реакторы работают без повреждений и поломок. Другим источником загрязнения радиоактивными веществами служат рудники и обогатительные фабрики. Медицинские процедуры и методы лечения, связанные с применением радиоактивности, вносят основной вклад в дозу, получаемую человеком от техногенных источников.
Ядерные взрывы тоже вносят свою лепту в увеличение дозы облучения человека. Ядерные взрывы различаются по типам: а) воздушный взрыв; б) наземный или надводный взрыв; в)подземный или подводный взрыв. При взрыве ядерных боеприпасов выделяют несколько поражающих факторов, одни из которых является проникающая радиация. Обычно взрыв сопровождается мощными и неощутимыми ядерными излучениями, на доля которых приходится около 16-20% энергии ядерного взрыва.
При ядерном взрыве испускаются нейтроны, гамма-лучи, бета- и альфа-частицы. Но если альфа- и бета-частицы способны распространяться в воздухе лишь на небольшие расстояния, то гамма-лучи и нейтроны распространяются во все стороны от центра взрыва на многие сотни метров и даже на километры. Именно поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва и радиоактивного облака, принято называть проникающей радиацией. Время действия проникающей радиации при ядерном взрыве определяется двумя факторами, во-первых, подъемом продуктов взрыва и , во-вторых, периодом полураспада короткоживущих радиоактивных "осколков".
Вредное биологическое
воздействие гамма-лучей и