Происхождение солнечной системы

Автор: Пользователь скрыл имя, 10 Декабря 2011 в 21:08, реферат

Описание работы

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий. Ей отдал дань наш соотечественник Отто Юльевич Шмидт.
И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Содержание

Вступление *
1. История развития гипотез о происхождение Солнечной системы *
2. Современные теории происхождения Солнечной системы *
3. Гипотеза о возникновении Солнца из газовой туманности *
5. Образование планет *
Заключение *
Литература *
Вступление

Работа содержит 1 файл

Происхождение Солнечной системы.doc

— 378.50 Кб (Скачать)

Процесс образования планет и их спутников

 
При моделировании отдельных стадий эволюции протопланетного облака и образования планет (рис.) большое внимание уделяется начальной стадии - опусканию пылинок в центральной плоскости диска и их слипанию в условиях допланетного облака. От быстроты роста пылинок зависит время их опускания и образование уплощенного пылевого диска. Последующий распад пылевого диска, образование пылевых сгущений и их превращение в рой компактных тел астероидных размеров с космогонич. точки зрения был весьма быстрым (<10
лет). Следующий этап - аккумуляция планет из роя "промежуточных" тел и их обломков - занял гораздо больше времени. При исследовании этого этапа все шире используется моделирование на ЭВМ. Результаты расчетов наглядно продемонстрировали зависимость конечного числа планет от массы вещества в допланетном облаке. С. Доул (США) нашел, что при массе облака > 0,15   аккумулирующиеся тела сливаются в единый звездообразный спутник Солнца. Это явл. еще одним подтверждением правильности модели маломассивного допланетного облака. Численное моделирование в принципе позволяет определять одновременно распределение масс и распределение скоростей допланетных тел. Однако сложность учета гравитац. взаимодействия многих тел долгое время не позволяла получать надежные результаты. Недавно Дж. Везерил (США) проделал весьма трудоемкие расчеты динамики роя тел в "зоне питания" планет земной группы, к-рые подтвердили как характер распределения скоростей на заключительном этапе роста планет, так и время аккумуляции Земли (~ 10лет), оценивавшиеся ранее аналитич. методами. Процесс образования планет земной группы прослежен уже достаточно детально. Получаемым методом численного моделирования расстояния между планетами, их массы, периоды собств. вращения, наклоны осей удовлетворительно согласуются с наблюдениями.

Эволюция допланетного облака:  
а - опускание пыли к центральной плоскости;  
б - формирование пылевого субдиска;  
в - распад пылевого субдиска на пылевые сгущения;  
г - формирование из пылевых сгущений компактных тел;  
д - эволюция роя тел, сопровождающаяся столкновениями,  
дроблением и объединением тел;  
е - формирование зародышей планет;  
ж - диссипация газа из облака и его аккреция на Юпитер  
и Сатурн;  
з - современная планетная система.  
(По Б.Ю. Левину, 1964 г.)

Процесс образования  планет-гигантов был более сложным, и многие его детали еще предстоит выяснить. Существуют две гипотезы о пути формирования Юпитера и Сатурна, содержащих много водорода и гелия (по своему составу они ближе к Солнцу, чем др. планеты). Первая гипотеза ("контракции") объясняет "солнечный" состав планет-гигантов тем, что в протопланетном диске большой массы образовались массивные газово-пылевые сгущения - протопланеты, к-рые затем в процессе гравитац. сжатия превратились в планеты-гиганты. Эта гипотеза не объясняет удаления из Солнечной системы больших излишков вещества, не вошедшего в планеты, а также причин отличия состава Юпитера и Сатурна от солнечного (Сатурн содержит больше тяжелых хим. элементов, чем Юпитер, к-рый, в свою очередь, содержит их относительно больше, чем Солнце). Согласно второй гипотезе ("аккреции"), образование Юпитера и Сатурна протекало в два этапа. На первом, длившемся ок.   лет с области Юпитера и   лет в области Сатурна, происходила аккумуляция твердых тел таким же образом, как в области планет земной группы. Когда самые крупные тела достигли критич. массы (ок. двух масс Земли), начался второй этап - аккреция газа на эти тела, длившийся не менее 105-10лет. На первом этапе из области Юпитера диссипировала часть газа, и его состав оказался отличным от солнечного; еще больше это проявилось у Сатурна. На стадии аккреции наибольшая темп-ра наружных слоев Юпитера достигала 5000 К, а у Сатурна - ок. 2000 К. Значит. прогревание Юпитером своей окрестности определило силикатный состав его близких спутников. Согласно гипотезе контракции на ранней стадии планеты-гиганты также имели высокие темп-ры, однако динамика процессов в рамках гипотезы аккреции более обоснована. Образование Урана и Нептуна, содержащих всего 10-20% H и He, также лучше объясняется второй гипотезой. К моменту достижения ими критич. массы (за время ~ 10лет) б'ольшая часть газа уже покинула Солнечную систему.

Малые тела Солнечной  системы - астероиды и кометы - представляют собой остатки роя "промежуточных" тел. Астероиды - это каменистые тела внутр. околосолнечной зоны, кометы - каменисто-ледяные тела зоны планет-гигантов. Массы планет-гигантов еще до завершения их роста стали столь большими, что своим притяжением начали очень сильно изменять орбиты пролетавших мимо них малых тел. В результате нек-рые из них приобрели очень вытянутые орбиты, в т.ч. и орбиты, уходящие далеко за пределы планетной системы. На тела, удалявшиеся дальше 20-30 тыс. а.е. от Солнца, заметное гравитац. воздействие оказывали ближайшие звезды. В большинстве случаев воздействие звезд приводило к тому, что малые тела переставали заходить в область планетных орбит. Планетная система оказалась окруженной роем каменисто-ледяных тел, простирающимся до расстояний 10а.е. (~ 1 пк) и являющимся источником ныне наблюдаемых комет. Существование кометного облака установил нидерландский астроном Я. Оорт (1950 г.). Влияние ближайших звезд может иногда столь сильно возмутить орбиту каменисто-ледяного тела, что оно уйдет совсем из Солнечной системы, а иногда может перевести его на орбиту, проходящую в окрестности Солнца. Вблизи Солнца ледяные тела начинают испарятсья под действием его лучей и становятся видимыми - возникает явление кометы.

Астероиды сохранились  до нашего времени благодаря тому, что подавляющее большинство  их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно присоединились к этим планетам либо разрушились при взаимных столкновениях, либо были выброшены за пределы этой зоны благодаря гравитац. воздействию планет.

Крупнейшие из совр. астероидов - поперечником в 100 км и более - образовались еще в эпоху  формирования планетной системы, а  средние и мелкие в большинстве  своем явл. обломками крупных  астероидов, раздробившихся при столкновениях. Благодаря столкновениям астероидных тел непрерыво пополняется запас пылевого вещества в межпланетном пространстве. Др. источником мелких твердых частиц явл. распад комет при пролете их вблизи Солнца.

Недра "первичных" крупных астероидов подвергались, по-видимому, разогреву примерно до 1000oС, что отразилось на составе и структуре их вещества. Мы знаем об этом благодаря тому, что на поверхность Земли выпадают мел-кие обломки астероидов -метеоритов, состав и физ. св-ва к-рых указывают, что они прошли стадии нагрева и дифференциации вещества. Причины разогрева астероидов до конца не ясны. Возможно, нагрев был связан с выделением теплоты при распаде короткоживущих радиоактивных изотопов; астероиды могли быть также нагреты взаимными столкновениями.

Нек-рые метеориты  представляют собой наилучшие из доступных нам образчиков "первичного" планетного вещества. По сравнению  с земными горными породами они  несравненно меньше изменены последующими физ.-хим. процессами. Возрасты метеоритов, определяемые по содержанию радиоактивных элементов и продуктов их распада, характеризуют в то же время возраст всей Солнечной системы. Он оказывается равным ок. 4,6 млрд. лет. Следовательно, длительность процесса формирования планет незначительна по сравнению с временем их дальнейшего существования.

Происхождение систем регулярных спутников планет, движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора, авторы космогонич. гипотез обычно объясняют повторением в малом масштабе того же процесса, к-рый они предлагают для объяснения образования планет Солнечной системы. Системы регулярных спутников имеются у Юпитера, Сатурна и Урана, к-рые обладают также кольцами из мелких твердых частиц. У Нептуна нет регулярной системы спутников и, по-видимому, нет колец. Совр. планетная космогония объясняет образование регулярных спутников эволюцией протоспутниковых дискообразных poев частиц, возникших в результате неупругих столкновений вблизи данной планеты планетезималей, двигавшихся по околосолнечным орбитам.

В системе регулярных спутников Юпитера имеется деление  на две группы: силикатную и водно-силикатную. Различия в хим. составе спутников  показывают, что молодой Юпитер был горячим (нагрев мог быть обусловлен выделением гравитац. энергии при аккреции газа). В системе спутников Сатурна, состоящих в основном из льда, нет деления на две группы, что связано с более низкой темп-рой в окрестностях Сатурна, при к-рой могла конденсироваться вода.

Происхождение иррегулярных спутников Юпитера, Сатурна  и Нептуна, т. е. спутников, обладающих обратным движением, а также небольшого внеш. спутника Нептуна, обладающего  прямым движением по вытянутой орбите, объясняют захватом.

У медленно вращающихся  планет Меркурия и Венеры спутников  нет. Они, по-видимому, испытали приливное  торможение со стороны планеты и  упали в конце концов на её поверхность. Действие приливного трения проявилось также в системах Земля-Луна и  Плутон-Харон, где спутники, образуя с планетой двойную систему, всегда повёрнуты к планете одним и тем же полушарием.

Объяснение происхождения  Луны потребовало детального исследования св-в околоземного роя частиц, существование  к-рого поддерживалось в течение  всего времени аккумуляции Земли неупругими столкновениями частиц в ее окрестностях.

Образование роя  достаточной массы возможно лишь за счёт многочисл. столкновений наиболее мелкой фракции межпланетных частиц. Динамика роя позволяет подойти  к объяснению различий в хим. составе Луны и Земли, черпавших вещество из одной и той же зоны. Преимуществ. попадание в рой мелких частиц могло одновременно привести к обогащению роя силикатным веществом, т. к. именно каменистые тела при столкновениях образуют мелкую пыль (в отличие от металлич. тел). На стадии мелкодисперсного вещества могли быть частично потеряны и летучие вещества, дефицит к-рых был обнаружен в лунных породах. Из спутникового роя могла образоваться система из неск. крупных спутников, орбиты к-рых с разной скоростью эволюционировали под действием приливного трения и к-рые в конечном счете объединились в одно тело - Луну. Анализ состава и определения возраста доставленных в 70-х гг. 20 в. на Землю лунных пород показал, что Луна еще в ходе своего образования или вскоре после этого была разогрета и прошла магматич. дифференциацию, в результате к-рой сформировалась лунная кора. Изобилие крупных ударных кратеров на материковой части лунной поверхности показывает, что кора успела затвердеть ещё до того, как затухла интенсивная бомбардировка Луны формировавшими ее телами. Слияние Луны из неск. крупных тел (протолун) дает быстрое нагревание до 1000 К ее поверхностного слоя толщиной в сотни км, что лучше согласуется с ранней дифференциацией вещества Луны. При медленной аккумуляции Луны из мелких частиц выделившейся гравитац. энергии недостаточно для требуемого нагрева Луны. Альтернативные гипотезы нагрева Луны в результате распада короткоживущих радиоактивных изотопов и нагрева электрич. токами, индуцированными интенсивным солнечным ветром, требуют неприемлемо быстрого образования Луны на самом раннем этапе формирования Солнечной системы. Итак, наиболее вероятным представляется образование Луны на околоземной орбите, однако в литературе продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

Заметное различие ср. плотности планет земного типа связано, по-видимому, со значит. различием  общего содержания Fe и содержания металлич. Fe. Высокая плотность Меркурия (5,4 г/см3) указывает на то, что он содержит до 60-70% металлич. никелистого железа, тогда как низкая плотность Луны (3,34 г/см3) указывает на отсутствие в ней значит. количеств металлич. железа (менее 10-15%). Содержание богатого железом сплава в Земле составляет ок. 32%, в Венере - ок. 28%.

В 70-е гг. 20 в., одновременно с развитием представлений  о последовательной конденсации  различных веществ в остывающем протопланетном облаке, появилась гипотеза неоднородной (гетерогенной) аккумуляции  планет, согласно к-рой полная аккумуляция  нелетучих веществ в несколько крупных тел - ядер будущих планет - успевала произойти до заметного дальнейшего остывания облака и конденсации других, более летучих веществ. По этой гипотезе, формирующиеся планеты с самого начала оказываются слоистыми. В сочетании с предположением о конденсации сначала металлич. железа, а затем силикатов гипотеза гетерогенной аккумуляции объясняла возникновение железных ядер у Земли и Венеры. Однако она игнорировала надежные астрофизич. оценки скорости остывания облака: остывание должно происходить несравненно быстрее, чем аккумуляция продуктов конденсации. Выдвигалась также гипотеза, что ядра Земли и Венеры состоят в основном из силикатов и окислов, перешедших под действием давления вышележащих слоев в плотное металлич. состояние. В этом случае ядра Земли и Венеры содержали бы всего неск. % металлич. железа, т.е. приблизительно столько же, сколько ядро Луны, но меньше, чем ядро Марса (давление в недрах Марса и Луны заведомо слишком мало для перехода силикатов в металлич. состояние). Эксперименты по статич. сжатию вещества до давлений, близких к давлениям в ядрах Земли и Венеры, пока не позволяют сделать определенного вывода о возможности таких фазовых переходов с достаточно большим скачком плотности.

По-видимому, образование  ядер у планет земной группы произошло вследствие отделения богатого железом расплава от ферромагнезиальных силикатов. Физикохимия процесса отделения железного расплава и динамика опускания его к центру планеты изучены пока недостаточно. В работах, посвященных анализу процесса расслоения первично однородных планет, наибольшее число расчетов проводится для Земли.    

Начальное состояние и эволюция Земли

 
Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность ср. плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах хим. неоднородности частично сглаживались. Удары тел с размерами в десятки и более км приводили к накоплению существенной доли энергии на большой глубине, что являлось осн. источником нагрева планеты. Дополнит. разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше темп-ры плавления пород на этих глубинах. (В недрах планеты темп-ра плавления увеличивается с глубиной вследствие роста давления.) На глубинах 50-2000 км темп-ра превосходила темп-ру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую темп-ру, уже тогда допускавшую существование первичных водных бассейнов. По-видимому, уже на заключит. этапах аккумуляции Земли началась крупномасштабная дифференциация вещества - отделение и уход в нижние горизонты тяжелых компонентов. Гравитац. энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара - земную кору. Это был длит. процесс (неск. млрд. лет), к-рый в разных местах земного шара протекал по-разному, что привело к образованию участков с толстой корой (материков) и участков с тонкой корой (океанич. впадин). Земная кора отличается и по составу, и по плотности от подстилающего ее вещества мантии Земли. Плотность коры составляет 2,7-2,8 г/см
3, а плотность верхней мантии (приведённая к нулевому давлению) ок. 3,3-3,5 г/см3. Скачок плотности на границе ядра превышает 4 г/см3. Плотность вещества ядра несколько меньше плотности Fe при этих давлениях, что указывает на присутствие в нем какой-то более легкой примеси.

Информация о работе Происхождение солнечной системы