Автор: Пользователь скрыл имя, 28 Сентября 2011 в 14:11, контрольная работа
Введение понятия электромагнитного поля расширило научное представление о формах материи, изучаемых в физике. Классическая, ньютоновская физика имела дело только с одной единственной формой физической материи — веществом, которое было построено из материальных частиц и представляло собой систему таких частиц, в качестве которых рассматривались либо материальные точки (механика), либо атомы (учение о теплоте).
Введение 3
1. Структурность и системность материи 4
2. Поле и вещество 6
Заключение 9
Список используемой литературы 10
Характеризуя единство прерывного и непрерывного в структуре материи, следует также упомянуть единство корпускулярных и волновых свойств всех частиц вещества. Обладая относительной дискретностью, микрообъекты при взаимодействиях и движении могут проявлять волновые свойства, способность к дифракции и интерференции, они характеризуются длиной волны, обратно пропорциональной их массе и скорости a = h/mv , где h - постоянная Планка, одна из двух универсальных физических констант (вторая - скорость света в вакууме) Это соотношение устанавливает взаимосвязь корпускулярного параметра частицы - массы - с волновым параметром этой же частицы - длиной волны.
С дискретной точки зрения строение материи можно представить в виде такой структуры, которая предполагает возможность ее конечного деления на все уменьшающиеся отдельные части, начиная от молекул и атомов и кончая элементарными частицами и кварками.
С точки зрения непрерывности материя представляется в виде определенной целостности и единства. Наглядным образом такой непрерывности является любая сплошная среда, которая заполняет определенное пространство. Свойства такой среды, например жидкости, изменяются от одной точки к другой непрерывно, без перерыва постепенности и скачков. На примере электромагнитного поля мы убедились, что силовое воздействие такого поля передается от близлежащей предшествующей точки к последующей, т.е. непрерывно.
В классической теории существовало явное противопоставление дискретности и непрерывности, когда исключалось всякое их взаимодействие при изучении вещества и поля. В современной же физике, как мы убедимся в дальнейшем, именно взаимосвязь и взаимодействие дискретности и непрерывности, корпускулярных и волновых свойств материи при исследовании свойств и закономерностей движения ее мельчайших частиц служит основой адекватного описания изучаемых явлений и процессов. Таким микрочастицам материи присущ корпускулярно-волновой дуализм, т.е. они одновременно обладают как свойствами корпускул (вещества), так и волн (поля).
Подобное представление совершенно чуждо классической физике, в которой дискретный и корпускулярный подход применялся при изучении одних явлений, а непрерывный и полевой — при исследовании других. Более того, мы знаем теперь, что механистическая трактовка явлений электричества и магнетизма основывалась в конечном счете на дискретной и корпускулярной их интерпретации, когда они рассматривались как особые субстанции, т.е. когда отождествлялись с разновидностью вещества.
Более универсальный подход к единому объяснению всех физических явлений с точки зрения единой теории поля был выдвинут в качестве грандиозной программы создателем теории относительности А. Эйнштейном, но так и остался нереализованным. Основные его идеи станут понятными после того, как мы познакомимся с теорией относительности.
Диалектическое взаимодействие дискретности и непрерывности находит свое яркое воплощение в современных квантовых теориях полей. Действительно, взаимодействие в квантовой теории электромагнитного поля происходит в результате взаимного обмена фотонами, квантами этого поля. То же самое можно сказать о гравитационном поле, где такое взаимодействие осуществляется с помощью гравитонов, гипотетических частиц такого поля. Частицы, или кванты, поля в каждой точке пространства создают поле сил, которое оказывает свое воздействие на другие частицы.
Само же поле в истории физики интерпретировалось по-разному. В первых представлениях об электромагнетизме поле рассматривалось чисто механически, а именно как натяжение силовых линий между зарядами, а в оптике как упругое колебание особой, все проникающей среды — мирового эфира. После отказа от такого допущения сначала в теории электромагнитного поля, а затем в теории относительности на роль своеобразного эфира в современной физике претендует, по-видимому, физический вакуум. В квантовой теории поля он рассматривается как низшее энергетическое состояние квантованных полей, в котором отсутствуют какие-либо реальные частицы. Однако возможность виртуальных процессов в вакууме приводит к определенным эффектам при взаимодействии его с реальными частицами. В квантовой теории поля понятие физического вакуума считается основным, поскольку его свойствами определяются свойства всех других состояний системы.
Таким образом, с развитием физики представления о веществе и поле в корне изменились. Прежнее их противопоставление в классической физике уступило место пониманию их взаимосвязи и взаимодействия в современной физике. С одной стороны, вещество рассматривается как определенная дискретная система взаимодействующих элементарных частиц. С другой стороны, поле как непрерывная целостность состоит из квантов поля, которые обмениваются друг с другом энергией и тем самым обеспечивают существование и движение самой системы.
Как поле, так и вещество обладают определенными физическими параметрами. Под полем в физике понимают специфическую форму распределения материи в пространстве и времени: в каждой точке пространства-времени существует определенное числовое значение параметра, характеризующего эту материю. Например, движущееся поле (волна) описывается длиной волны, фазой, амплитудой и их изменениями во времени и пространстве. Другая ипостась материи - частицы - характеризуются иным набором параметров: спин, заряд, масса покоя, время жизни и ряд квантовых чисел.
Важнейшей характеристикой частицы служит спин, собственный момент количества движения. В классической механике такая величина характеризует вращение тела, например, волчка. Но буквальный перенос этого понятия на макрочастицу теряет смысл, поскольку элементарные частицы невозможно представить вращающимися крохотными волчками. В физике спин интерпретируется как внутренняя степень свободы частицы, обеспечивающая ей дополнительное физическое состояние. В отличие от классического момента количества движения, который может принимать любые значения в их непрерывной последовательности, спин принимает только положительные дискретные значения, пропорциональные постоянной Планка. Коэффициент пропорциональности называется спиновым квантовым числом, у одних частиц он имеет целочисленное значение (0, 1, 2...), а у других - полуцелые значения (1/2, 3/2...).
Свойства
и поведение частиц существенно
зависят от того, целое или полуцелое
значение имеет их спин. Исходя из этого
значения, можно систематизировать и классифицировать
данные об элементарных частицах.
Заключение
Таким образом, с развитием физики представления о веществе и поле в корне изменились. Прежнее их противопоставление в классической физике уступило место пониманию их взаимосвязи и взаимодействия в современной физике. С одной стороны, вещество рассматривается как определенная дискретная система взаимодействующих элементарных частиц. С другой стороны, поле как непрерывная целостность состоит из квантов поля, которые обмениваются друг с другом энергией и тем самым обеспечивают существование и движение самой системы.
Как поле, так и вещество обладают определенными физическими параметрами. Под полем в физике понимают специфическую форму распределения материи в пространстве и времени: в каждой точке пространства-времени существует определенное числовое значение параметра, характеризующего эту материю. Например, движущееся поле (волна) описывается длиной волны, фазой, амплитудой и их изменениями во времени и пространстве. Другая ипостась материи - частицы - характеризуются иным набором параметров: спин, заряд, масса покоя, время жизни и ряд квантовых чисел.
Человеческое
познание структурной организации
материи относительно и изменчиво,
зависит от постоянно расширяющихся возможностей
эксперимента, наблюдений и научных теорий.
Современной науке известны следующие
типы материальных систем и соответствующие
им структурные уровни материи.: элементарные
частицы и поля (электромагнитное, гравитационное
и другие); атомы, молекулы, макроскопические
тела различных размеров, геологические
системы, Земля и другие планеты, звёзды,
внутригалактические системы (диффузные
туманности, звёздные скопления и другие),
Галактика системы галактик, Метагалактика,
границы и структура которой пока ещё
не установлены. Современные границы познания
структуры материи. простираются от 10-14
см до 1028 см (примерно 13 млрд.
световых лет); но и внутри этого диапазона
может существовать множество ещё неизвестных
видов материи
Список
используемой литературы