Автор: Пользователь скрыл имя, 09 Ноября 2011 в 20:51, реферат
Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Когда в культуре господствовали мифологические представления, происхождение мира объяснялось, как, скажем, в «Ведах» распадом первочеловека Пуруши. То, что это была общая мифологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила представления о сотворении Богом мира из ничего.
I. Введение стр. 3
II. Основная часть
1. Основные концепции космологии стр. 4
2. Модель Большого взрыва стр. 7
3. Реликтовое излучение стр. 9
4. Сценарий развития Вселенной после Большого Взрыва стр. 11
5. Модель раздувающейся Вселенной стр. 13
6. Новая гипотеза происхождения и эволюции Вселенной,
Солнечной системы, Земли В. Ф. Непомилуева стр. 16
III. Заключение стр. 28
IV. Используемая литература стр. 30
Оглавление
I. Введение стр. 3
II. Основная часть
1.
Основные концепции космологии
2. Модель Большого взрыва стр. 7
3. Реликтовое излучение стр. 9
4. Сценарий развития Вселенной после Большого Взрыва стр. 11
5. Модель раздувающейся Вселенной стр. 13
6. Новая гипотеза происхождения и эволюции Вселенной,
Солнечной системы, Земли В. Ф. Непомилуева стр. 16
III. Заключение стр. 28
IV. Используемая литература стр. 30
I. Введение
Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Когда в культуре господствовали мифологические представления, происхождение мира объяснялось, как, скажем, в «Ведах» распадом первочеловека Пуруши. То, что это была общая мифологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила представления о сотворении Богом мира из ничего.
С появлением науки в ее современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении Вселенной. Физика добилась больших успехов в изучении макроскопических и микроскопических свойств природы, однако понимание и объяснение свойств Вселенной в целом происходило не так уверенно. Извечные вопросы, которые всегда волновали человечество, во многом не разрешены и до сих пор. Как возникли звезды, планеты, вся Вселенная? Как развивалась эта Вселенная в прошлом, куда движется в настоящем и что ждет её в будущем? На некоторые вопросы мы можем ответить уже сейчас, другие ждут своего ответа. Но каждый шаг вперёд ставит также и новые вопросы, раздвигая области неведомого. Сколько вещества во Вселенной? Существуют ли во Вселенной другие виды материи? Неизвестна природа странных объектов, излучающих фантастическое количество энергии из дальнего Космоса. И так далее…
Тем не менее к настоящему времени сложились определенные научные представления о происхождении и эволюции Вселенной.
II. Основная часть
1. Основные концепции космологии
Вселенная - самая крупная материальная система. Её происхождение интересует людей ещё с древних времён. Вначале Вселенная была «безвидна и пуста», - так сказано в Библии. Вначале был вакуум - уточняют современные физики. Каковы же истоки происхождения Вселенной? Как она развивается? Какова её структура? На эти и другие вопросы пытались ответить ученые разных времён. Однако даже крупнейшие достижения естествознания XX в. не дают полностью исчерпывающие ответы. В этой связи нельзя не вспомнить слова известного поэта М. Волошина:
«Мы, возводя соборы космогоний,
Не внешний в них отображаем мир,
А только грани нашего незнания».
Тем не менее принято считать, что основные положения современной космологии – науки о строении и эволюции Вселенной – начали формироваться после создания в 1917 году А. Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Эта модель характеризовала стационарное состояние Вселенной и, как показали астрофизические наблюдения, оказалась неверной.
Важный
шаг в решении космологических
проблем сделал в 1922 году профессор
Петроградского университета А. А. Фридман
(1888 – 1925). В результате решения космологических
уравнений он пришел к выводу: Вселенная
не может находиться в стационарном состоянии
– она должна расширяться или сужаться.
Следующий шаг был сделан в 1924 году, когда в обсерватории Маунт Вилсон в Калифорнии американский астроном Э. Хаббл (1889 – 1953) измерил расстояние до ближайших галактик (в то время называемых туманностями) и открыл тем самым мир галактик. В 1929 году в той же обсерватории Э. Хаббл по красному смещению линий в спектре излучения галактик экспериментально подтвердил теоретический вывод А.А. Фридмана о расширении Вселенной и установил эмпирический закон – закон Хаббла: скорость удаления галактики V прямо пропорциональна расстоянию r до неё, т. е.
V=Hr, где H – постоянная Хаббла.
С течением времени постоянная Хаббла постепенно уменьшается – разбегание галактик замедляется. Но такое уменьшение за наблюдаемый промежуток времени ничтожно мало. Обратной величиной постоянной Хаббла определяется время жизни (возраст) Вселенной. Из результатов наблюдения следует, что скорость разбегания галактик увеличивается примерно на 75км/с на каждый миллион парсек. При данной скорости экстраполяция к прошлому приводит к выводу: возраст Вселенной составляет примерно 15млрд лет, а это означает, что вся Вселенная 15млрд лет назад была сосредоточена в очень маленькой области. Предполагается, что в то время плотность вещества Вселенной была сравнима с плотностью атомного ядра, и вся Вселенная представляла собой огромную ядерную каплю. По какой-то причине ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции большого взрыва.
По мере развития естествознания и особенно ядерной физики выдвигаются различные гипотезы о физических процессах на разных этапах космологического расширения. Одна из них предложена в конце 40-х годов XX века Г.А. Гамовым (1904-1968), физиком-теоретиком, эмигрировавшим из Советского Союза в США, и называется моделью горячей Вселенной. В ней рассмотрены ядерные процессы, протекавшие в начальный момент расширения Вселенной в очень плотном веществе с чрезвычайно высокой температурой. По мере расширения Вселенной плотное вещество охлаждалось.
Из этой модели следует два вывода:
1) вещество, из которого зарождались первые звёзды, состояло в основном из водорода (75%) и гелия (25%);
2) в сегодняшней Вселенной должно наблюдаться слабое электромагнитное излучение, сохранившее память о начальном этапе развития Вселенной, и поэтому называется реликтовым.
Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был близок радиусу электрона. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров.
Г.А. Гамов предположил, что температура вещества после Большого Взрыва была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в ходе эволюции проходит определённые этапы, в ходе которых происходит образование химических элементов и структур.
В современной космологии начальную стадию эволюции Вселенной делят на эры:
Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.
Эра лептонов (лёгких частиц, вступающих в электромагнитное взаимодействие). Продолжительность эры 10 с. Основную роль играют лёгкие частицы, принимающие участие в реакциях между протонами и нейтронами.
Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы – энергии Вселенной – приходится на фотоны. Главную роль играет излучение, которое в конце эры отделяется от вещества.
Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвёзд и протогалактик.
2. Модель Большого взрыва
Итак, одна из современных теорий – теория Большого Взрыва (Big Bang) смогла к настоящему времени объяснить почти все факты, связанные с космологией.
В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 15 – 20 млн. лет назад, когда всё вещество и энергия современной Вселенной были сконцентрированы в одном сгустке. Модель Большого Взрыва (БВ) была предложена в 1948 году Г.А. Гамовым.
Возвращаясь
к сгустку перед Большим
Г.А. Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после Большого Взрыва. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но привели только к образованию гелия. Спектр гелия наблюдали в солнечном излучении задолго до того, как он был обнаружен на Земле, отсюда и название этого элемента происходит от греческого Гелиос – Солнце. Современные методы анализа излучения звёзд и галактик показали, что почти все они состоят из водорода (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звёздах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвёздном пространстве водород и гелий находятся в атомарном состоянии. Теория Большого Взрыва полностью согласуется с наблюдаемой распространённостью гелия во Вселенной.
Рассмотрим вариант образования сгустка первовещества. Предполагается, что эти межзвёздные атомы водорода и гелия служат сырьём для образования новых звёзд. Заметим, что распределение газа в межзвёздном пространстве неоднородно. Имеются выраженные флуктуации. Эти флуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определённой области может существенно превысить среднюю. При этом предполагается, что если количество превысит в какой-либо области критическое значение порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлёту газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвёздной пыли сгустка, гигантское уплотнение и…взрыв!
3. Реликтовое излучение
Наиболее важным подтверждением теории Большого Взрыва является обнаружение реликтового излучения, связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввёл отечественный астрофизик И.С. Шкловский(1916 – 1985). Первоначально оно обладало огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия квантов уменьшилась, т.е. возросла длина их волны. Это фоновое излучение существует и сейчас во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Температуру реликтового излучения рассчитал Г.А. Гамов. Она составляет около 3К, согласно современным данным 2,74 К. В последние годы экспериментально обнаружена анизотропия (неравномерность) реликтового излучения, которую связывают с неоднородностями распределения материи и наличием слабых возмущений.
Открытие
реликтового излучения
4. Сценарий развития Вселенной после Большого Взрыва
Рассмотрим один из многих возможных сценариев развития событий по модели Большого Взрыва и горячей Вселенной. Сразу после Большого Взрыва Вселенная представляла собой сингулярность – область с очень высокой плотностью энергии из элементарных квантов электромагнитного излучения огромных энергий со взаимными превращениями. Приблизительно через 1 с. Вселенная стала расширяться с уменьшением плотности и температуры. При громадных плотностях и температурах вещество состояло только из элементарных частиц – протонов и нейтронов. Частицы движутся так быстро, что при столкновениях образуются парами новые частицы (частица – античастица). Чем выше температура Вселенной, тем более тяжелые частицы могут рождаться при столкновениях.