Автор: Пользователь скрыл имя, 19 Ноября 2010 в 16:10, контрольная работа
ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЕСТЕСТВОЗНАНИЯ.
ВОЗНИКНОВЕНИЕ НАУЧНОГО ЭКСПЕРИМЕНТА, КАК МЕТОДА ИССЛЕДОВАНИЯ.
РЕВОЛЮЦИИ В ЕСТЕСТВОЗНАНИИ.
В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории.
Крупные научные революции связаны с такими достижения человеческой мысли, как:
Рассмотрим эти основные достижения.
R Польский астроном Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой (геоцентрической). Она явилась продолжением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.
«Трудно переоценить значение и влияние гелиоцентрической картины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса»8.
R Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира.
R Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.
Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени.
R Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения, звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.
«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ»9.
Благодаря трудам Галилея и Ньютона XVIII век считается началом того длительного периода времени, когда господствовало механистическое мировоззрение.
R Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем:
R Следующая научная революция, после которой резко изменилась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых экспериментальных фактов, которые не могли быть описаны в рамках старых теорий, как это обычно бывает в науке. К таким фактам относятся прежде всего:
Проникая в область микромира, физики столкнулись с неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и главным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.
R В 1905 г. А. Эйнштейн
создал специальную
теорию относительности, в которой
свойства пространства и времени связаны
с материей и вне материи теряют смысл.
Эта теория дает преобразование пространственных
и временных координат тел, которые двигаются
со скоростями, сравнимыми со скоростью
света. Вторая часть теории, которая называется
общей теорией относительности, связывает
присутствие больших гравитационных полей
(или массы) с искривлением пространства.
Эта часть теории используется в космологических
моделях.
Итак, историческое развитие человечества постоянно сопровождалось развитием науки.
Ученые, внесшие свой вклад в развитие науки, были яркими личностями - они сочетали в себе профессиональные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высокой степени интуиции.
С тех пор прошло уже много времени. Современная наука быстро прогрессирует и научные открытия совершаются на наших глазах. Современное естествознание представляет собой сложную, разветвленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислительной техникой и компьютеризацией), кибернетику, синергетику.
Но
не только последние научные данные
можно считать современными, а
все те, которые входят в толщу
современной науки, образуя ее краеугольные
камни, поскольку наука не состоит
из отдельных, мало связанных между
собой теорий, а представляет собой
во многом единое целое, состоящее из разновременных
по своему происхождению частей.
Информация о работе Основные этапы исторического развития естествознания