Органическая живая природа в КСЕ

Автор: Пользователь скрыл имя, 17 Апреля 2012 в 18:17, контрольная работа

Описание работы

Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и до ядерными одно- и многоклеточными существами. Богатейший мир многоклеточных существ представлен тремя царствами - грибами, растениями и животными. Каждое из этих царств в свою очередь представлено разнообразными типами, классами, отрядами, семействами, родами, видами, популяциями и особями. Все эти таксоны являются результатом исторического развития мира живого, его эволюции.

Содержание

Введение 3
1. Основные области Мира – Космос, Биота и Социум. Специфика живого вещества (Биоты) и проблемы изучения живой природы в естествознании 4
2. Концепции происхождения жизни на планете 7
3. Концепции эволюции живых организмов 9
4. Концепция структурных уровней организации биотической материи и учение о биосфере 13
Заключение 16
Вопрос 4. Космологические концепции происхождения и эволюции Вселенной…………………………………………………………………………...17
Вопрос 6. Происхождение и эволюция Солнечной системы……………………23
Библиографический список ………………………………………………………..30

Работа содержит 1 файл

Органическая живая природа в КСЕ.doc

— 168.50 Кб (Скачать)

3

 

Оглавление

Введение              3

1.              Основные области Мира – Космос, Биота и Социум. Специфика живого  вещества (Биоты) и проблемы изучения живой природы в естествознании              4

2. Концепции происхождения жизни на планете              7

3. Концепции эволюции живых организмов              9

4. Концепция структурных уровней организации биотической материи и учение о биосфере              13

Заключение              16

Вопрос 4. Космологические концепции происхождения и эволюции Вселенной…………………………………………………………………………...17

Вопрос 6. Происхождение и эволюция Солнечной системы……………………23

Библиографический список              ………………………………………………………..30

 


Введение

Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и до ядерными одно- и многоклеточными существами. Богатейший мир многоклеточных существ представлен тремя царствами - грибами, растениями и животными. Каждое из этих царств в свою очередь представлено разнообразными типами, классами, отрядами, семействами, родами, видами, популяциями и особями. Все эти таксоны являются результатом исторического развития мира живого, его эволюции.

Но мир живого еще имеет и структурно-инвариантный аспект: живое обладает молекулярной, клеточной, тканевой и иной структурностью.

Биология ХХ века углубила понимание существенных черт живого, раскрыла молекулярные основы жизни. В основе современной биологической картины мира лежит представление о том, что мир живого - это грандиозная Система высокоорганизованных систем. Любая система (и в неорганической и в органической природе) состоит из элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними.

Объект работы - органическая живая природа в КСЕ.

Цель работы – рассмотреть особенности живой природы в КСЕ.

Задачи работы:

- изучить проблемы изучения живой природы в КСЕ;

- рассмотреть концепции возникновения жизни;

- изучить концепции живых организмов;

– изучить концепция структурных уровней организации биотической материи и учение о биосфере. 

 

 


1.                  Основные области Мира – Космос, Биота и Социум. Специфика живого  вещества (Биоты) и проблемы изучения живой природы в естествознании

Космос (греч. κόσμος — порядок) — в материалистической философии (начиная со школы пифагорейцев) — упорядоченная Вселенная (в противоположность хаосу).

Космос - единственный целостный комплекс всего существующего (от галактик до элементарных частиц и окружающей их среды). Он Идеален так как беспределен во времени и пространстве, всё остальное относительно.

Позже понятие космос стало идентично понятию Вселенная. В иконописной традиции на фреске "Сошествие Св.Духа на апостолов Космос изображен в виде царя с короной.[источник не указан 106 дней]

В христианской философии (патристика) космос - субстантив мирского - испорченное грехом творение, от которого следует отрекаться в процессе обожения и нравственного самоусовершенствования [4, с.42].

Био́та (от греч. biote — жизнь) — совокупность видов растений, животных и микроорганизмов, объединенных общей областью распространения. В отличие от биоценоза, может характеризоваться отсутствием экологических связей между видами [2, с.53].

Общество — это сложная, объемная, многоуровневая, открытая органическая система, основанная на коллективной деятельности людей.[1, с.523].

Краткие определения общества:

Общество = народ + государство.

Общество – это социальная система.

Общество – это социальный организм.

Живое вещество — вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности [6, с.31].

Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.

В состав живого вещества входят как органические (в химическом смысле), так и неорганические, или минеральные, вещества.

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Специфика живого вещества заключается в следующем:

1.                  Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные не застывшие лавовые потоки.

2.                  Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

3.                  Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

4.                  Произвольное движение живого вещества, в значительной степени саморегулируемое. В.И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.

5.                  Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

6.                  Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

7.                  Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т.е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений [5, с.32].

Работа живого вещества в биосфере достаточно многообразна. Для понимания той работы, которую совершает живое вещество в биосфере очень важными являются три основных положения, которые В.И. Вернадский назвал биогеохимическими принципами:

1.                  Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.

2.                  Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.

3.                  Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени [4, с.291].

 

2. Концепции происхождения жизни на планете

Вопрос о возникновении и развитии жизни на нашей планете является одной из центральных проблем естествознания. Два основных подхода к ответу на этот вопрос сформировались еще в глубокой древности. Теологи и философы-идеалисты связывали возникновение жизни с божественным, творческим актом. Такой подход лежит в основе концепции креационизма, которая находится вне сферы естествознания и науки в целом. Философы-материалисты рассматривают происхождение жизни как естественный закономерный процесс в развитии материи. В то же время с античных времен до наших дней учеными выдвигались самые разные гипотезы происхождения жизни на Земле. Остановимся на четырех наиболее распространенных группах гипотез, в той или иной степени актуальных и сегодня.

С глубокой древности существует гипотеза самопроизвольного зарождения жизни. Суть этой гипотезы заключается в том, что жизнь возникла и продолжает возникать многократно из неживого вещества. Среди античных мыслителей этой гипотезы придерживался Аристотель, научные концепции которого в области биологических знаний сохранялись незыблемыми на протяжении двух тысячелетий. Согласно развиваемым им представлениям, живые организмы могут возникать не только в результате размножения, но и образовываться из неживого вещества под действием сил природы (солнечный свет, влага). Эта гипотеза оказалась весьма живучей, многие ученые разных эпох дополняли ее новыми "фактами", "наблюдениями", "экспериментами" и собственной аргументацией. Так, вполне серьезно и обстоятельно, ученые XVI -XVII вв. описывали "экспериментальное" создание "червей из куска гниющего мяса" или разведение мышей в горшке, куда предварительно закладывалось тряпье и горсть размоченного зерна.

Первый серьезный удар по гипотезе самозарождения был произведен строгими наблюдениями и очевидными экспериментами итальянского врача и биолога Ф. Реди (1688 г.). Им было установлено, что черви, возникающие на гниющих кусках мяса или рыбы, - ничто иное, как личинки мух, развивающиеся из отложенных взрослыми насекомыми яичек. На основании этих и других своих исследований Ф. Реди сформулировал концепцию биогенеза, суть которой можно выразить весьма лаконично: "все живое от живого". Работы Ф. Реди существенно подорвали популярность гипотезы самозарождения, но уже век спустя она вновь занимает умы ученого мира [5, с.31].

Утверждая идею биогенеза, Л. Пастер прекрасно осознавал неразрывную связь неживой и живой природы. По его представлениям, жизнь возникла когда-то на нашей планете из неживой природы. Но это было однократным событием, обусловленным уникальным сочетанием условий, различных факторов, определивших возникновение жизни. Появление каких-либо организмов на Земле вторично (и неоднократно), при наличии уже существующих разнообразных жизненных форм, невозможно. Во-первых, потому, что синтез органических веществ из неорганических возможет лишь при весьма специфических условиях, о которых речь пойдет ниже. Во-вторых, если бы эти органические "тела" возникли сегодня, то они тут же "пожирались" бы существующими организмами.

Таким образом, развенчание гипотезы самопроизвольного зарождения жизни и утверждение биогенеза явилось важным достижением науки XIX века. Однако ответа на вопрос - существует ли жизнь вечно или когда-то произошло ее возникновение - в результате противоборства этих концепций получено не было [4, с.31].

Согласно гипотезе стационарного состояния, жизнь существует вечно так же, как вечно существует Земля. Эта гипотеза представляется мало продуктивной, т.к. сближается, с одной стороны, с креационизмом, а с другой - с рассматриваемой ниже гипотезой панспермии. Аргументация сторонников гипотезы стационарного состояния противоречит геологической и палеонтологической летописи нашей планеты, данным космогонии и других наук.

Гипотеза панспермии выдвигает идею о том, что "семена" жизни были занесены на нашу планету извне, из космоса, с метеоритами и космической пылью. Эта гипотеза опирается на данные, свидетельствующие о высокой устойчивости некоторых микроорганизмов (особенно их спор) к высоким и низким температурам, вакууму, радиации и другим воздействиям. Основанием для таких предположений (о существовании живых форм в космосе) служат находки предшественников сложных органических веществ - синильной кислоты, формальдегида и других, которые были обнаружены в космическом пространстве спектроскопическими методами. Всего найдено около 20 органических соединений. Однако до сих пор нет достоверных фактов обнаружения подобных веществ в материале метеоритов, упавших на поверхность Земли.

Наиболее разработанной, аргументированной, имеющей широкое признание в настоящее время является гипотеза происхождения жизни путем биохимической эволюции, выдвинутая в первой четверти XX века российским ученым академиком А.И. Опариным и английским ученым Холдейном (гипотеза Опарина-Холдейна) [1, с.42].

 

3. Концепции эволюции живых организмов

Уже в глубокой древности высказывались догадки о постепенном изменении, развитии (эволюции) живой природы. Гераклит (VI-V вв. до н.э.), который сформулировал положение с постоянно происходящих в природе изменениях (”всё течёт, всё изменяется”). Эмпедокл в V в. считал, что вначале на свет появились разрозненные части различных организмов (головы, туловища, ноги). Они соединялись между собой в самых невероятных сочетаниях. Позднее будто бы все нежизнеспособные комбинации погибли. Анаксимен выдвинул идею внезапного превращения видов в результате последовательности качественных скачков.

Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от лат. “созидание”) – учению о сотворении мира богом из ничего и неизменности созданного творцом мира. В преодолении идей креацианизма и телеологии важную роль сыграла концепция ограниченной изменчивости видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды – трансформизм. Эту концепцию в развернутой форме сформулировал выдающийся естествоиспытатель XVIII века Жорж Бюффон в своем 36-томном труде “Естественная история”. Трансформизм в основе своей имеет представления об изменении и превращении органических форм, происхождении одних организмов от других. Среди естествоиспытателей и философов-трансформистов XVII и XVIII веков наиболее известны также Р.Гук, Ж.Ламетри, Д.Дидро, Э.Дарвин, И.Гете, Ж. Сент-Илер. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды [3, с.31].

Большую роль в становлении и развитии идеи эволюции живой природы сыграла эмбриология и ее направления, получившие название «эпигенез» и «преформизм».

Эпигенез – это учение, согласно которому в процессе зародышевого развития происходит постепенное и последовательное новообразование органов и частей зародыша из бесструктурной субстанции оплодотворенного яйца.

Эпигенез как учение сложился в XVII и XVIII веках в борьбе с преформизмом. Эпигенетические представления развивали У.Гарвей, Бюффон, К.Ф.Вольф. Эпигенетики отказались от идеи божественного творения живого и подошли к научной постановке проблемы происхождения жизни. Таким образом, в XVII и XVIII веках возникала идея исторических изменений наследственных признаков организмов, необратимого исторического развития живой природы – идея эволюции органического мира.

В противовес эпигенетикам в среде эмбриологов возникла теория преформизма. Согласно этой теории в яйце существуют материальные структуры, определяющие развитие зародыша и являющиеся носителями всех признаков организма (гены, согласно современной терминологии). Их этой теории развилась современная генетика [2, с.31].

По-своему идея эволюции органического мира развивалась в теории катастроф. Французский биолог Жорж Кювье (1769-1832) писал: “Жизнь не раз потрясала на нашей земле страшными событиями. Бесчисленные живые существа становились жертвой катастроф: одни, обитатели суши, были поглощаемы потопами, другие, населявшие недра вод, оказывались на суше вместе с внезапно приподнятым дном моря, сами их расы навеки исчезали, оставив на свете лишь немногие остатки, едва различимые для натуралистов”.

Теория катастроф (катастрофизм) исходит из представлений о единстве геологических и биологических аспектов эволюции. В теории катастроф прогресс органических форм объясняется через признание неизменяемости отдельных биологических видов.

Главным и наиболее авторитетным противником теории Кювье был французский зоолог Жоффруа Сент-Илер (1772 – 1844). Он считал основой основ то, что природа управляется естественными законами. Главной проблемой биологии является познание причин единства органического мира. Сент-Илер использовал для своих исследований сравнительно-анатомический метод. Он выяснил, что все животные организмы, как вымершие, так и ныне живущие. организованы по единому плану, бесконечно варьирующему в деталях. То есть они состоят из одних и тех же органов, одинаковым образом расположенных и выполняющих сходные функции. Он выяснил, что развитие органов у животных имеет медленный поэтапный характер. При этом изменения в их строении вызываются воздействиями условий существования видов. В своих исследованиях ученый доказал принцип « единства в многообразии» всего животного мира.

Против учения катастрофизма выступили сторонники другой концепции эволюции, которые также ориентировались преимущественно на геологическую проблематику, но исходили из представлений о тождественности современных и древних геологических процессов – концепции униформизма. Униформизм складывался под влиянием успехов классической механики, прежде всего небесной механики, галактической астрономии, представлений о бесконечности и безграничности природы в пространстве и времени. В XVIII м, первой половине XIX-го века концепцию униформизма разработали Дж. Геттон, Ч. Лайель, М.В.Ломоносов, К.Гофф и др. Эта концепция опирается на представления об однообразии и непрерывности законов природы, их неизменности на протяжении истории Земли. Геологи не наблюдают наличие переворотов и скачков в истории Земли, а отмечают суммирование мелких отклонений в течение больших периодов времени; потенциальную обратимость явлений и наличие постепенности развития [6, с.203].

Переход от представления о трансформации видов к идее эволюции, исторического развития видов произошел на рубеже XVIII – XIX -ого веков.

Целая плеяда выдающихся ученых – Бюффон, Дидро, Ламетри, Эразм Дарвин в большей или меньшей степени приближались к историческому взгляду на живую природу, высказывая отдельные эволюционные предположения.

Первая попытка построения целостной концепции развития органического мира была предпринята французским естествоиспытателем Ж-Б.Ламарком (1744-1829).

Согласно теории Ламарка растения и низшие животные прямо подвергаются воздействию среды и преобразуются. На высших животных среда действует опосредованно: перемена внешних условий – перемена возможностей – изменение привычки – активное функционирование одних органов и их развитие – потеря активности других органов и их отмирание.

Но рассуждения Ламарка содержали ошибку, которая заключалась в простом факте: приобретённые признаки не наследуются. В конце XIX в. немецкий биолог Август Вейсман поставил известный эксперимент – на протяжении 22 поколений отрезал хвосты подопытным мышам. И всё равно новорождённые мышата имели хвосты ничуть не короче, чем их предки.

В целом, теория Ламарка опередила свое время и была отвергнута научным сообществом. Но потом у него появилось много последователей. Неоламаркисты разных направлений составляли ударный кулак противников разработок Чарлза Дарвина [3, с.102].

 

4. Концепция структурных уровней организации биотической материи и учение о биосфере

Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.[3, с.131]

Живая природа представляет собой сложно организованную, иерархичную систему. Выделяют несколько уровней организации живой материи.

1.Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

2. Клеточный. Клетка - структурная и функциональная единица размножения и развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, т.к. они могут проявлять свойства живых систем только в клетках.

3.Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

4.Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы.
Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

5.Биогеоценотический. Биогеоценоз - сообщество, совокупность организмов разных видов и различной сложности организации со всеми факторами конкретной среды их обитания - компонентами атмосферы, гидросферы и литосферы.

6.Биосферный. Биосфера - самый высокий уровень организации жизни на нашей планете. В ней выделяют живое вещество - совокупность всех живых организмов, неживое или косное вещество и биокосное вещество (почва).[3, с.103]

Та часть литосферы, гидросферы и атмосферы Земли, в которой существуют и развиваются растительные и живые организмы, называется биосферой. В ее состав входят не только растительный покров и животное население планеты, все реки и озера, водная масса океанов, но и почвенный слой, значительная часть тропосферы и самый верхний слой земной коры.

  Однако не стоит считать, что биосфера лишь современная живая плёнка планеты, т.е. автономная совокупность всех организмов, населяющих поверхность Земли и её гидросферу и проникающих в той или иной мере в приповерхностные зоны атмосферы и литосферы.  Биосфера сложным образом соотносится с тремя другими геосферами Земли. Таким образом, биосфера - это открытая система, существующая, вероятно, столь же долго, как и сама Земля. Биосфера непрерывно функционирует только в силу своей неразрывной связи с другими геосферами нашей планеты.

Живые организмы без пропусков заполняют всю поверхность планеты. Вся совокупность живых организмов обитавших и обитающих на земле, играет огромную роль в ее геологической эволюции, а также во всех современных физических и химических процессах, протекающих на земной поверхности и в водной толще океанов.

В процессе эволюции биосферы между живыми организмами образовались определенные связи. Совокупность живых организмов: растений, микроорганизмов, животных, населяющих определенный, более или менее однородный участок поверхности Земли, называется биоценозом.

   У биосферы нет горизонтальных границ, только вертикальные, которые могут колебаться от нескольких сот метров до нескольких километров. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний — высокой температурой земных недр (свыше 100`С). Крайних пределов ее достигают только низшие организмы-бактерии [2, с.31].

 


Заключение

Работа живого вещества в биосфере достаточно многообразна. Живые системы - открытые системы, они постоянно обмениваются веществами и энергией со средой. Для них характерна отрицательная энтропия (увеличение упорядоченности), увеличивающаяся в процессе органической эволюции. В живых системах очень ярко проявляется способность к самоорганизации материи.

Современная молекулярная биология показала поразительное единство живой материи на всех уровнях ее развития - от простейшего микроорганизма до высшего млекопитающего.

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны. Среди них: молекулярный, клеточный, тканевой, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Могут быть выделены и другие уровни.

Но во всем таком многообразии уровней должны быть выделены некоторые основные уровни. Критерием выделения основных уровней должно быть выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании таких критериев достаточно четко выделяются уровни организации живых систем:

молекулярно-генетический,

онтогенетический,

популяционно-видовой,

биосферный (биогеоценотический) уровни организации живого.

Таким образом, молекулярно-генетический, онтогенетический, популяционно-видовой и биоценотический уровни - четыре основных уровня организации жизни на Земле.

 


Вопрос 4. Космологические концепции происхождения и эволюции Вселенной

Вселенную в целом изучает наука, называемая космологией. Выводы космологии называются моделями происхождения и развития Вселенной, или космологическими моделями. [6,110]

Современный этап в становлении и развитии  космологического знания относится к ХХ веку, когда советский ученый А.А. Фридман (1888-1925) математически доказал идею саморазвивающейся Вселенной. Работа А.А. Фридмана в корне изменила основоположения прежнего научного мировоззрения. По его утверждению, космологические начальные условия образования Вселенной были сингулярными.

Разъясняя характер эволюции Вселенной, расширяющейся начиная с сингулярного состояния, Фридман особо выделял два случая: а) радиус кривизны Вселенной с течением времени постоянно возрастает, начиная с нулевого значения; б) радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто, сингулярное состояние), затем снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку, и т.д.[6,112]

Дальнейшие достижения науки расширяли возможности в познании окружающего человека мира. Предпринимались новые попытки объяснить, с чего же все началось. Жорж Леметр был первым, кто поставил вопрос о происхождении наблюдаемой крупномасштабной структуры Вселенной. Им была выдвинута концепция «Большого Взрыва», так называемого «первобытного атома» и последующего превращения его осколков в звезды и галактики. Конечно, с высоты современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира. [8,219]

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной, «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины - один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома», по мнению Г.А. Гамова, образовался своеобразный космологический котел с температурой порядка трейх миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца - отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва».

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудники Альфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространенности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов. [8,220]

Ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц - протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий - горячей и холодной - и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

Почти в то же время группа американских исследователей во главе с физиком Робертом Дикке, не зная об опубликованных результатах работы Гамова, Альфера и Германа, возродила, исходя из иных теоретических соображений, горячую модель Вселенной. Посредством астрофизических измерений Р. Дикке и его сотрудники нашли подтверждение существования космического теплового излучения. Это эпохальное открытие позволило получить важную, ранее недоступную информацию о начальных порах эволюции астрономической Вселенной. Зарегистрированное реликтовое излучение есть не что иное, как прямой радиорепортаж об уникальных общевселенских событиях, имевших место вскоре после «Большого Взрыва» - самого грандиозного по своим масштабам и последствиям катастрофического процесса в обозримой истории Вселенной. [6,116]

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории - о нейтронном составе «космического яйца» и горячем состоянии молодой Вселенной - проверку временем выдержала только последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения. [6,119]

На нынешней стадии развития физической космологии на передний план выдвинулась задача создания тепловой истории Вселенной, в особенности сценария образования крупномасштабной структуры Вселенной.

Последние теоретические изыскания физиков велись в направлении следующей фундаментальной идеи: в основе всех известных типов физических взаимодействий лежит одно универсальное взаимодействие; электро-магнитное, слабое, сильное и гравитационное взаимодействия являются различными гранями единого взаимодействия, расщепляющегося по мере понижения уровня энергии соответствующих физических процессов. Иначе говоря, при очень высоких температурах (превышающих определенные критические значения) различные типы физических взаимодействий начинают объединяться, а на пределе все четыре типа взаимодействия сводятся к обоюдному единственному протовзаимодействию, называемому «Великим синтезом».

В настоящее время еще нет всесторонне проверенной и признанной всеми теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно продвинулись в понимании естественных путей ее формирования и эволюции. С 1981 года началась разработка физической теории раздувающейся (инфляционной) Вселенной. К настоящему времени физиками предложено несколько вариантов данной теории. Предполагается, что эволюция Вселенной, начавшаяся с грандиозного общекосмического катаклизма, именуемого «Большим Взрывом», в последующем сопровождалась неоднократной сменой режима расширения. [6,117]

Согласно теории Маркова, всякий раз, когда Вселенная из фридмановской стадии (конечное сжатие) переходит в стадию деситтеровскую (начальное расширение), ее физико-геометрические характеристики оказываются одними и теми же. Марков считает, что этого условия вполне достаточно для преодоления классического затруднения на пути физической реализации вечно осциллирующей Вселенной.

При этом считается, что процесс эволюции Вселенной происходит очень медленно. Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась, эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную. Рассмотрим каждую из перечисленных эр более подробно.

Адронная эра. При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов hν составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 1013K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во Вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4 секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4с.), температура ее понизилась до 1012K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

Лептонная эра. Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем «реликтовыми». Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

Фотонная эра или эра  излучения. На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 1010 Kа энергия гамма фотонов достигла 1 Мэв, произошла аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была  заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной  Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии

Звездная эра. После «большого  взрыва» наступила продолжительная эра вещества, эпоха преобладания частиц, которая продолжается до наших дней. По сравнению с периодом «большим взрыва» её развитие представляется замедленным. Это происходит по причине низкой плотности и температуры. [6,120-122]

Таким образом, Вселенная развивается и в наше время: в спиральных  галактиках рождаются и умирают звезды, Вселенная продолжает расширяться.

 

 

        Вопрос 6. Происхождение и эволюция Солнечной системы

Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Наша Солнечная система – не единственная во Вселенной Элементы этой теории используются в современной космогонии.

Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М. Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы.

В настоящее время общепризнанной является теория формирования планетной системы в четыре этапа. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно. При этом стихает первоначальная турбулентность, хаотичное движение частиц, газ конденсируется в твердое вещество, минуя жидкую фазу. Образуются более крупные твердые пылевые крупинки – частицы. Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой – газопылевой диск. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск. Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости в пылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела – планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась. Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико – миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды. Протосолнце становится горячим. Его излучение нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения. Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.[11,84]

В нашей Солнечной системе на периферии образовались планеты-гиганты, способные удержать возле себя газовые оболочки. Сначала сформировались ядра планет-гигантов, а затем планеты «нарастили» себе оболочку из водорода и гелия. Двухступенчатая модель образования гигантов подтверждается фактами.

В центре Солнечной системы сформировались менее массивные планеты. Здесь солнечный ветер выдул мелкие частицы и газ. А вот более тяжелые частицы, наоборот, стремились к центру. Рост Земли продолжался сотни миллионов лет. Ее недра прогрелись до 1000–2000 К благодаря гравитационному сжатию и участвовавшим в аккумуляции крупным телам (до сотен километров в поперечнике). Падение таких тел сопровождалось образованием кратеров с очагами повышенной температуры под ними. Другой и основной источник тепла Земли – распад радиоактивных элементов, в основном, урана, тория и калия. В настоящее время температура в центре Земли достигает 5000 К, что гораздо выше, чем в конце аккумуляции. Солнечные приливы затормозили вращение близких к Солнцу планет – Меркурия и Венеры. С появлением радиологических методов был точно определен возраст Земли, Луны и Солнечной системы – около 4,6 млрд. лет. Компьютерные эксперименты продемонстрировали замечательное свойство нашей планетной системы: пролет звезды с массой порядка 0,1 массы Солнца через ее внешние области мало изменит орбиты планет земной группы.[6,102]

Астрономы древности полагали, что Вселенная и Солнечная система существовали вечно и будут существовать еще столько же в неизменном виде. С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают. В 1745 году французский ученый Бюффон высказал гипотезу, что планеты образовались из вещества, выброшенного из Солнца после столкновения Солнца с кометой. Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце. [10,40]

В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной. Согласно Лапласу, часть газового вещества отделилась от центрального сгустка под действием возросшей при сжатии центробежной силы, что следует из закона сохранения момента количества движения. Это вещество послужило материалом для образования планет. Гипотеза Лапласа долгое время владела умами ученых, но трудности, с которыми она встретилась, в частности при объяснении медленности современного вращения Солнца, заставили астрономов обратиться к другим гипотезам. В конце 19 в. появилась гипотеза американских ученых Ф. Мультона и Т. Чемберлена об образовании планет из мелких твердых частиц, названных ими планетезималями. Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путем застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. Такое образование планетезималей противоречит закону сохранения момента количества движения, но в  то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет.[10,51]

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в конце 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить огромные размеры планетной системы. Чтобы вырвать вещество из Солнца, звезда должна была пролететь очень близко от него, а в таком случае это вещество и возникшие из него планеты должны были бы кружиться в непосредственном соседстве с Солнцем. Кроме того, вырванное вещество было бы весьма горячим, поэтому оно скорее рассеялось бы в пространстве, чем собралось в планеты. После крушения гипотезы Джинса планетная космогония вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества.

В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система.

В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Идея об аккумуляции планет из роя холодных тел и частиц, который, по его представлениям, был захвачен Солнцем, в отличие от предшествующих космогонических гипотез, рассматривавших образование планет из раскаленных газовых сгустков, Земля образовалась из холодных твердых тел и сначала была относительно холодной. Шмидт считал, что вопросы происхождения допланетного облака, образования планет и их эволюции могут рассматриваться в некоторой степени независимо. Работами Шмидта и ряда других советских ученых (Л.Э. Гуревича, А.И. Лебединского, Б.Ю. Левина, В.С. Сафронова) выяснены основные черты эволюции протопланетного облака и процесса формирования планет.[10,29]

В 60-х гг. 20 в. появились первые приближенные количеств. теории совместного образования Солнца и протопланетного облака (Ф. Хойл, Великобритания, 1960 г.; А. Камерон, США, 1962 г.; Э. Шацман, Франция, 1967 г.). В этих теориях в той или иной форме рассматривалось отделение вещества от сжимающегося протосолнца вследствие наступления у него ротационной неустойчивости (при уравнивании на экваторе центробежной силы и силы притяжения).[12,5]

Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность средних плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах химической неоднородности частично сглаживались. Удары тел с размерами в десятки и более км. приводили к накоплению существенной доли энергии на большой глубине, что являлось основным источником нагрева планеты. Дополнительный разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше температуры плавления пород на этих глубинах. На глубинах 50-2000 км температура превосходила температуру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую, уже тогда допускавшую существование первичных водных бассейнов.

По-видимому, уже на заключительных этапах аккумуляции Земли началась крупномасштабная дифференциация вещества - отделение и уход в нижние горизонты тяжелых компонентов. Гравитационная энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара - земную кору.[15,3] Это был длительный процесс (несколько млрд. лет), который в разных местах земного шара протекал по-разному, что привело к образованию участков с толстой корой (материков) и участков с тонкой корой (океанических впадин). Земная кора отличается и по составу, и по плотности от подстилающего ее вещества мантии Земли. Плотность коры составляет 2,7-2,8 г/см3, а плотность верхней мантии (приведённая к нулевому давлению) около 3,3-3,5 г/см3. Скачок плотности на границе ядра превышает 4 г/см3. Плотность вещества ядра несколько меньше плотности Fe при этих давлениях, что указывает на присутствие в нем какой-то более легкой примеси.

Разогревание Земли сопровождалось выделением газов и водяных паров, содержащихся в небольшом количестве в земных каменистых веществах. Прорвавшись на поверхность, водяные пары сконденсировались в воды морей и океанов, а газы образовали атмосферу, состав которой первоначально существенно отличался от современного. Состав современной земной атмосферы в значительной мере обусловлен существованием на Земле жизни (биосферы). Некоторую роль в образовании гидросферы и атмосферы, возможно, сыграли падавшие на Землю ледяные ядра комет.

Процесс химического  расслоения земных недр происходит и сейчас. Легкие расплавы в виде магмы поднимаются из мантии в кору, они частично застревают и застывают внутри земной коры, а частично прорывают кору и в виде лавы изливаются наружу при вулканических извержениях. Перемещения вещества в недрах Земли проявляются в виде подъемов и опусканий больших участков поверхности, горизонтальных перемещений отдельных плит, на которые расчленена земная кора, в виде процессов вулканизма и горообразования, а также землетрясений.

 

Библиографический список

1.                  Горелов А.А. Концепция современного естествознания. - Москва, 2005, с.593.

2.                  Дубнищева Т.Я. , Пигарев А.Ю. Современное естествознание. Учеб. пособие. - Новосибирск, 2005, с.345.

3.                  Карпенко С.Х. Концепции современного естествознания: Учебник для вузов. – М.: Академический проспект, 2000. - 639 с.

4.             Концепции современного естествознания: учебник для вузов / В.Н. Лавриненко, В.П. Ратников, Г.В. Баранов и др.; под ред. проф В.Н. Лавриненко, В.П. Ратникова. – 2-е изд.; перераб. и доп. – ЮНИТИ-ДАНА, 2001. – 303 с.

5.                  Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. - М., 2006, с.352.

6.                  Моисеев Н.Н. Человек и биосфера. - М., 2006, с.423.

7.                  Найдыш В.М. Концепции современного естествознания. Учебное пособие. - М., 2006, с.423.

8.                  Розенталь И.Л. Элементарные частицы и структура Вселенной. - М., 2005, с.534

9.                  Рузавин Г. Концепция современного естествознания. М. 1997. – 276 с.

10.             Рускол Е.Л. Происхождение Луны М., 1975 – 40 с.

11.             Сафронов В.С. Эволюция допланетного облака и образование Земли и планет, М., 1969. – 166 с.

12.             Шмидт О.Ю. Четыре лекции о теории происхождения Земли, 3 изд., М., 1957. -39 с.

 

Информация о работе Органическая живая природа в КСЕ