Автор: Пользователь скрыл имя, 11 Января 2012 в 19:52, контрольная работа
Дело в том, что наука – это не только собрание фактов об электричестве и т.п.
Это одно из наиболее важных духовных движений наших дней.
Наука – это не только совокупность знаний. Науке можно учить, как
увлекательнейшей части человеческой истории – как быстро развивающемуся росту
смелых гипотез, контролируемых экспериментом и критикой.
Введение
1. Развитие естествознания в XX.в.
2. Закон всемирного тяготения.
3. Происхождения человека и его самоорганизация.
4. Заключение
5. Список литературы.
План.
Введение
Введение.
Дело в том, что наука – это не только собрание фактов об электричестве и т.п.
Это одно из наиболее важных духовных движений наших дней.
Наука – это не только совокупность знаний. Науке можно учить, как
увлекательнейшей части человеческой истории – как быстро развивающемуся росту
смелых гипотез, контролируемых экспериментом и критикой. Преподаваемая как
часть истории «естественной философии» и истории проблем и идей
Итак, естествознание — неотъемлемая и важная часть духовной культуры
человечества. История естествознания рассматривается в свете научных
революций, связанных с выявлением фундаментальных принципов природы.
Этапов выделяют иногда три-четыре, иногда более десяти. Переходы от этапа к
этапу и от одной научной революции к другой не похожи на триумфальное шествие
человеческой мысли. Основные направления ее развития возникали в результате
перебора многих «окольных путей», отступлений, «периодов топтания на месте».
Научная
картина мира это – множество
теорий в совокупности описывающих
известный человеку природный мир,
целостная система
Таких четко и однозначно фиксируемых радикальных смен научной картины мира, научных революций в истории развития науки можно выделить три, обычно их принято персонифицировать по именам трех ученых сыгравших наибольшую роль в происходивших изменениях.
Фундаментальные основы новой картины мира:
Позднее в рамках новой картины мира произошли революции в частных науках в космологии (концепция не стационарной Вселенной), в биологии (развитие генетики), и т.д. Таким образом, на протяжении XX века естествознание очень сильно изменило свой облик, во всех своих разделах.
Три глобальных революции предопределили три длительных периода развития науки, они являются ключевыми этапами в развитии естествознания. Это не означает, что лежащие между ними периоды эволюционного развития науки были периодами застоя. В это время тоже совершались важнейшие открытия, создаются новые теории и методы, именно в ходе эволюционного развития накапливается материал, делающий неизбежной революцию. Кроме того, между двумя периодами развития науки, разделенными научной революцией, как правило, нет неустранимых противоречий, согласно сформулированному Н. Бором, принципу соответствия, новая научная теория не отвергает полностью предшествующую, а включает ее в себя в качестве частного случая, то есть устанавливает для нее ограниченную область применения. Уже сейчас, когда с момента возникновения новой парадигмы не прошло и ста лет многие ученые высказывают предположения о близости новых глобальных революционных изменений в научной картине мира.
Дарвин, предложил механизм его осуществления впервые приложив принцип эволюционизма к одной из областей действительности, заложив, таким образом, основы теоретической биологии. Г. Спенсер, попытался применить идей Дарвина в области социологии, он доказал принципиальную возможность применения эволюционной концепции, к иным областям мира не составляющими предмет биологии. Но в целом классическое естествознание оставалось не затронуто идеями эволюционизма, эволюционирующие системы рассматривались как случайное отклонение, результат, локальных возмущений. Первыми попытались распространить применение принципа эволюционизма за пределы, биологических и социальных наук физики. Они выдвинули гипотезу расширения Вселенной, данные астрономии вынуждали признать несостоятельность предположения о ее стационарности. Вселенная явно развивается, начиная с гипотетического Большего взрыва давшего энергию для ее развития. Эта концепция была предложена в 40-е и окончательно утвердилась в 70-е гг. Таким образом, эволюционные представления проникли в космологию, концепция Большего взрыва оказала влияние на представления о последовательности появления веществ во Вселенной. Первоначально на один из компонентов вещества не мог существовать, лишь спустя некоторое время после Взрыва образовалось некоторое количество ядерного материала, (ядер атомов, водорода и гелия), затем возникли целые атомы с полными электронными оболочками, но только легких элементов, многообразие составляющее ту периодическую таблицу возникает только, в ходе синтеза, в недрах звезд первого поколения.
В XX веке
эволюционное учение интенсивно развивалось
в рамках его прародительницы
биологии. Современный эволюционизм
в научных дисциплинах
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.
Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию системы, ни одна часть системы не может измениться без изменения других. Связи по вертикали – связи субординации, одни элементы системы являются более значимыми чем другие, и подчиняются им. Система обладает признаком целостности – это означает что все ее составные части, соединяясь в целое, образуют нечто обладающее качествами, не сводимыми к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы. В естественных системах выделяют два больших класса систем: системы неживой и живой природы. Принято так же выделять три уровни строения материи.
Представление о макромире составляют наиболее старый компонент естествознания. Еще в донаучный период сложились определенные представления об этом уровне организации материи, они носили характер натурфилософии, т.е. наблюдаемые природные явления объяснялись на основе умозрительных философских принципов, при отсутствии методов экспериментального исследования. Самый большой вклад в исследование макромира сделали представители классического естествознания. Начало формирования научных взглядов на природу относится к XVI веку, когда Г. Галилей, обосновал гелиоцентрическую систему Н. Коперника, открыл закон инерции, разработал методику нового описания мира – научно-теоретического (выделение некоторых физических и геометрических характеристик исследуемых объектов). Таким образом, он заложил основы механистической картины мира. Ньютон, опираясь на труды Галилея, разработал теорию механики, описывающую одинаковыми закономерностями и движение небесных тел и земных объектов. В рамках механистической картины мира сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц – корпускул или атомов. Абсолютно прочных неделимых обладающих массой. Время рассматривалось как величина независящая от пространства и материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики.
К корпускулярной модели были сведены все процессы во вселенной, в том числе и распространение света. Ньютон считал, что святящиеся тела испускают мельчайшие частицы, движущиеся в соответствии с законами механики. Но наряду с корпускулярной теорией света в это же время начинает распространиться и волновая концепция автором, которой был Х. Гюйгенс. Волновая теория устанавливала аналогию между распространением свет и распространение волн в различных средах (в воде в воздухе). Средой распространения свет считался в то время эфир. Главным аргументом в пользу своей концепции Гюйгенс считал тот факт, что два луча света проходят сквозь друг друга, не рассеиваясь. Некоторые противоречия волновой концепции света были устранены опытами Гримальди, луч света способен, как и любая волна, огибать препятствия, если обычно этого не заметно, то это, потому что у света очень маленькая длинна волны, но если рассмотреть границу очень резкой тени при некотором увеличении, можно увидеть слабые участки освещенности в форме перемежающихся светлых и темных участков и ореолов. Это явление получило название дифракции. Подтверждением волновой концепции является так же интерференция (световые волны находящиеся в противофазе как бы гасят друг друга). В области электромагнитных явлений корпускулярная модель так же оказалась несостоятельной. Эксперименты М. Фарадея и теоретические работы Дж. Максвелла показали неадекватность механистической модели и в области электромагнитных явлений. М. Фарадей ввел понятие силовых линий, как направление действия электрических сил в магнитном поле. Дж. Максвелл создал уравнения, описывающие выводы М. Фарадея о магнетизме и электричестве. Благодаря этому силовое поле, первоначально являвшееся вспомогательным понятием, обрело собственную физическую реальность. Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений и открытое М. Фарадеем явление магнитной индукции, Дж. Максвелл математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Из уравнений Максвелла следовала возможность самостоятельного существования поля, которое, не будучи привязанным к заряду, распространяется в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. Исходя из этого, Максвелл сделал вывод, что световые волны представляют собой электромагнитные волны. Это положение было экспериментально подтверждено немецким физиком Г. Герцем в 1888 г.
После экспериментов Герца в физике утвердилось понятие поля как объективно существующей физической реальности. Таким образом, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. Вещество и поле различаются по физическим характеристикам: частицы вещества обладают массой покоя, а частицы поля – нет. Вещество и поле различаются по степени проницаемости: вещество малопроницаемо, а поле проницаемо полностью. Скорость распространения поля равна скорости света, а скорость движения частиц на несколько порядков меньше.