Автор: Пользователь скрыл имя, 09 Мая 2012 в 13:31, реферат
Некоторые считают, что интеллект – умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи – как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. Компьютер можно считать разумным, – утверждал Тьюринг, – если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком.
Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Может ли машина мыслить? . . . . . . . . . . . . . . . . . . . . . . . . . . . … 3
2. Основные подходы к искусственному интеллекту. . . . . . . . . . . . 6
2. 1. Электронный подход. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. 2. Кибернетический подход. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 3. Нейронный подход. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. 3. 1. Появление персептрона. . . . . . . . . . . . . . . . . . . . . . . . . . … 12
3. Применение искусственного интеллекта. . . . . .. . . . . . . . . . . . . . . 14
3. 1. Нейросети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. 2. Модель бюджета РФ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Следует отметить, что принцип "обратной связи", введенный Винером был в какой-то степени предугадан Сеченовым в явлении "центрального торможения" в "Рефлексах головного мозга" (1863 г.) и рассматривался как механизм регуляции деятельности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.
2. 3. Нейронный подход
К этому времени и другие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох, обладавший как и Винер философским складом ума и широким кругом интересов. В 1942 г. Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи перекликались с собственными идеями Маккалоха относительно работы головного мозга. В течении следующего года Маккалох в соавторстве со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.
Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, – рабочий инструмент одной из систем математической логики. Английский математик XIX в. Джордж Буль, предложивший эту остроумную систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию а нуль – ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.
Теории Маккаллоха-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов.
Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый "восходящий метод" – движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся системы" или "обучающейся машины" – все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в те времена бихевиористской школой психологии, т.е. вести себя так же как живые организмы. Однако отнюдь не во всех случаях возможна аналогия с живыми организмами. Как однажды заметили Уоррен Маккаллох и его сотрудник Майкл Арбиб, "если по весне вам захотелось обзавестись возлюбленной, не стоит брать амебу и ждать пока она эволюционирует".
Но дело здесь не только во времени. Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.
2. 3. 1. Появление персептрона
Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенблат, труды которого, казалось, отвечали самым заметным устремлениям кибернетиков. В середине 1958 г. им была предложена модель электронного устройства, названного им персептроном, которое должно было бы имитировать процессы человеческого мышления. Персептрон должен был передавать сигналы от "глаза", составленного из фотоэлементов, в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг воспринимает новую информацию и реагирует на нее через систему случайных связей между нейронами. Два года спустя была продемонстрирована первая действующая машина "Марк-1", которая могла научится распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам", напоминающие кинокамеры. Персептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания искусственного интеллекта. Чтобы научить персептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или "самопрограммирования". При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существенными, чем другие. Персептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности персептрона были ограниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка.
Ведущие представители так называемого "нисходящего метода" специализировались, в отличие от представителей "восходящего метода", в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например для игры в шахматы или поиска математических доказательств. К числу защитников "нисходящего метода" относились Марвин Минский и Сеймур Пейперт, профессора Массачусетского технологического института. Минский начал свою карьеру исследователя ИИ сторонником "восходящего метода" и в 1951 г. построил обучающуюся сеть на на вакуумных электронных лампах. Однако вскоре к моменту создания персептрона он перешел в противоположный лагерь. В соавторстве с с южно-африканским математиком Пейпертом, с которым его познакомил Маккаллох, он написал книгу "Персептроны", где математически доказывалось, что персептроны, подобные розенблатовсим, принципиально не в состоянии выполнять многие из тех функций, которые предсказывал им Розенблат. Минский утверждал, что, не говоря о роли работающих под диктовку машинисток, подвижных роботов или машин, способных читать, слушать и понимать прочитанное или услышанное, персептроны никогда не обретут даже умения распознавать предмет частично заслоненный другим. Глядя на торчащий из-за кресла кошачий хвост, подобная машина никогда не сможет понять, что она видит.
Нельзя сказать, что появившаяся в 1969 г. эта критическая работа покончила с кибернетикой. Она лишь переместила интерес аспирантов и субсидии правительственных организаций США, традиционно финансирующих исследования по ИИ, на другое направление исследований – "нисходящий метод".
Интерес к кибернетике в последнее время возродился, так как сторонники "нисходящего метода" столкнулись со столь же неодолимыми трудностями. Сам Минский публично выразил сожаление, что его выступление нанесло урон концепции персептронов, заявив, что, согласно его теперешним представлениям, для реального прорыва вперед в создании разумных машин потребуется устройство, во многом похожее на персептрон. Но в основном ИИ стал синонимом нисходящего подхода, который выражался в составлении все более сложных программ для компьютеров, моделирующих сложную деятельность человеческого мозга.
3. Применение искусственного интелекта
3. 1. Нейросети
Нейросети – это область ИИ, нашедшее наиболее широкое применение. Нейронная сеть представляет собой совокупность большого числа сравнительно простых элементов – нейронов. В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с интеллектуальными задачами:
простой обрабатывающий элемент - нейрон;
очень большое число нейронов участвует в обработке информации;
один нейрон связан с большим числом других нейронов;
изменяющиеся по весу связи между нейронами;
массированная параллельность обработки информации.
Нейросети предпочтительны там, где имеется очень много входных данных, в которых скрыты закономерности. Целесообразно использовать нейросетевые методы в задачах с неполной или «зашумлённой» информацией, а также в таких, где решение можно найти интуитивно. Преимущества нейросети становятся видны тогда, когда довольно часто изменяются «правила игры».
Нейросети применяются
В экономике для предсказания рынков, оценки риска невозврата кредитов, предсказания банкротств, автоматического рейтингования, оптимизации товарных и денежных потоков, автоматического считывания чеков и форм.
Медицина: обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
Авиация: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета.
Связь: сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в сети, фильтрация информации в push-системах, рубрикация новостных лент, адресная реклама, адресный маркетинг для электронной торговли.
Политические технологии: анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.
Автоматизация производства: оптимизация режимов производственного процесса, комплексная диагностика качества продукции (ультразвук, оптика, гамма-излучение и т. д.), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.
3. 2. Модель бюджета РФ
Независимый экспертный совет по стратегическому анализу проблем внешней и внутренней политики при Совете Федерации НИИ искусственного интеллекта представил проект "Технология нового поколения на основе недоопределенных вычислений и ее использование для разработки экспериментальной модели макроэкономики РФ". Появилась возможность просчитывать исход любого действия или предложения, касающегося бюджета страны, на много лет вперед.
Система позволяет видеть как изменится доходная часть, дефицит бюджета, объем промышленного производства в ответ, скажем, на увеличение налогов. Также можно посмотреть, сколько денег в прошлом году уплыло из бюджета: электронная машина, по уверению ученых, легко сможет справиться и с такой задачей. Ей даже не надо будет объяснять понятие "черный нал».
Можно решить и обратную задачу. Например, а что надо сделать, чтобы к 2000 году объем производства увеличился или, скажем, хотя бы не падал. Машина укажет нижнюю и верхнюю границу значений в том и другом случае для отпускаемых бюджетных денег по всем параметрам, так или иначе влияющим на производство.
Кроме того, можно узнать не по гороскопу и без помощи магов возможную последовательность "критических" и "удачных" моментов в развитии экономики страны при заданных исходных данных.
Разработчики проекта создали пока лишь демонстрационную модель, охватывающую около 300 параметров и период от 1990-го до 1999 года. Но для нормальной работы необходимо не менее 1000 параметров. И такая работа может быть проведена, если на нее будут отпущены средства. Надо провести множество прикладных работ, необходимы фундаментальные исследования по обоим основным составляющим проекта - математической и экономической. Здесь нужна серьезная государственная материальная поддержка.
Первый опыт по применению данной технологии в экономическом моделировании был проведен в 1987-1988 гг., когда НИИ ИИ вместе с Институтом экономики СО АН создал демонстрационную систему "Модель экономики СССР до 2000 года".
Внедрение действующей компьютерной модели макроэкономики и госбюджета РФ позволит автоматизировать подготовку исходных параметров госбюджета очередного года, согласование окончательного варианта для утверждения в парламенте, поддержку, оценку и контроль исполнения бюджета на всех его этапах. Экономический эффект внедрения модели может оказаться равным нескольким процентам ВВП.
Заключение
Так возможен ли всё-таки ИИ? Если под ИИ понимать разумную электронную машину, способную мыслить подобно человеку, то, скорее всего, нет, по крайней мере на сегодняшний день. Во-первых, недостаточно изучены устройство человеческого мышления, механизмы функционирования интеллекта. Во-вторых, технология ещё не располагает достаточными вычислительными мощностями для реализации столь сложной системы, и, к тому же, сомнителен сам факт возможности создания искусственного разума на базе широко используемых на сегодня машин с двоичным представлением информации.
Если ИИ считать вычислительной программой, решающей интеллектуальные задачи математически, путём расчленения нестандартной задачи до элементарных инструкций, то можно сказать, что фундамент искусственного интеллекта уже заложен, и последний достаточно широко применяется.