Автор: Пользователь скрыл имя, 16 Октября 2011 в 13:46, контрольная работа
Процессы, окружающие нас не всегда поддаются точному объяснению. Как раз на этом этапе перед человеком и встала проблема создания таких моделей и методов познания, которые бы смогли объяснить непознанное. Конечно же, в решении этой нелегкой задачи главную роль сыграло не только физическое толкование и применение физики, а пришлось обращаться к математики, к прикладной математики и ряду других точных наук. Каков же результат? Постепенное постижение истины.
2. Второе начало термодинамики.
Сущность
второго начала термодинамики составляет
утверждение о невозможности
получения работы за счет энергии
тел, находящихся в термодинамическом
равновесии.
Окружающая нас среда обладает значительными запасами тепловой энергии. Двигатель, работающий только за счет энергии находящихся в тепловом равновесии тел, был бы для практики вечным двигателем. Второе начало термодинамики исключает возможность создания такого вечного двигателя.
Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.
Молекулы газа стремятся к наиболее вероятному состоянию, т. е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т. е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связана с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явления, связанные с перемешиванием, с созданием хаоса из порядка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирующих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или просто радующие глаз своеобразные фигуры.
Количественной
характеристикой теплового
Нетрудно убедиться в том, что энтропия сложной системы равна сумме энтропии ее частей.
Закон, определяющий направление тепловых процессов, можно сформулировать как закон возрастания энтропии: для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии.
Данное утверждение принято считать количественной формулировкой второго закона термодинамики, открытого Р.Ю. Клаузиусом.
Идеальному случаю — полностью обратимому процессу замкнутой системы — соответствует не изменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. В этой связи закон о невозможности вечного двигателя второго рода, закон о стремлении тел к равновесному состоянию получают свое объяснение. Почему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспорядочно, хаотично.
Заключение
В этой работе были рассмотрены закономерности, деление которых приводит к появлению статистических и динамических. Суть их заключается и подчиняется так называемой причинно-следственной связи, основоположником и представителем которой был Пьер Симон Лаплас. В работе я попытался показать суть и динамических и статистических закономерностей, причем грань различия между ними четкая и ясная.
В заключении хотелось бы сказать, что из выше приведенного все законы и принципы применяются сейчас не только в современной физике, но и космологии, а также в развивающемся сейчас естествознании и в ряде других наук, изучающих природу в целом
Нельзя точно сказать, что статистические законы более точные и более применимые в описании явлений вокруг нас по сравнению с динамическими закономерностями и принципами. Ни в коем случае, ведь каждая из предложенных к рассмотрению совокупность законов рассматривает абсолютно не идентичные процессы, да и протекают они (процессы) совершенно по разному и в разных условиях. Поэтому и произошло такое разделение на две составные части.
Список
использованной литературы
1. Карпенков С.Х. Концепции современного естествознания – М.: 1997
2. Физическая энциклопедия
3. Р. Фейнман. Характер физических законов
4. Е.В. Ергопуло, Лекции по КСЕ
5. Горелов А.А., Концепции современного естествознания. – М.: Центр, 2001.
Информация о работе Динамические и статические закономерности в природе