Атомная теория

Автор: Пользователь скрыл имя, 31 Октября 2011 в 21:40, реферат

Описание работы

А́том (от др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств[1]. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

Содержание

1.Введение…………………………………………………….3
2. Модели атомов………………………………………………………......4
3. Свойства Атомов…………………………………………………………4
3.1 Масса атомов……………………………………………………….....5
3.2 Размер атомов………………………………………………………….5
3.3 Энергетические уровни…………………………………………………………5
4. Платон и Естествознании……………………………………………….8
5. Три закона Кеплера………………………………………………………17
6. Используемая литература………………………

Работа содержит 1 файл

реферат по КСЕ Лейко Дениса Сергеевича.doc

— 476.50 Кб (Скачать)

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в  миллион раз больше атома углерода.[20] Одна капля воды содержит 2 секстиллиона (2×1021) атомов кислорода, и в два раза больше атомов водорода.[21] Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода.[22] Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.[23]

Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.[

3.3 Энергетические уровни

Когда электрон находится в связанном состоянии  в атоме, он обладает потенциальной энергией, которая обратно пропорциональна его расстоянию от ядра. Эта энергия обычно измеряется в электронвольтах (эВ) и равна энергии, которую надо передать электрону, чтобы сделать его свободным (оторвать от атома). Согласно квантовомеханической модели атома связанный электрон может занимать только дискретный набор разрешённых энергетических уровней — состояний с определённой энергией. Наинизшее из разрешённых энергетических состояний называется основным, а все остальные — возбуждёнными.[33]

Для перехода электрона с одного энергетического уровня на другой нужно передать ему или отнять у него энергию. Это происходит путём соответственно поглощения или испускания фотона, причём энергия этого фотона равна абсолютной величине разности энергий начального и конечного уровней электрона. Энергия испущенного фотона пропорциональна его частоте, поэтому переходы между разными энергетическими уровнями проявляются в различных областях электромагнитного спектра.[34] Каждый элемент имеет уникальный спектр испускания, который зависит от заряда ядра, заполнения электронных подоболочек, взаимодействия электронов, а также других факторов.[35] 
 

Пример  линейного спектра поглощения

Когда излучение  с непрерывным спектром проходит через вещество (например, газ или плазму), некоторые фотоны поглощаются атомами или ионами, вызывая электронные переходы между энергетическим состояниями, разность энергий которых равна энергии поглощённого фотона. Затем эти возбуждённые электроны спонтанно переходят на уровень, лежащий ниже по энергии, снова испуская фотоны. Таким образом, вещество ведёт себя как фильтр, превращая исходный непрерывный спектр в спектр поглощения, в котором имеются серии тёмных полос. При наблюдении с тех углов, куда не направлено исходное излучение, можно заметить излучение с эмиссионным спектром, испускаемое атомами. Спектроскопические измерения энергии, амплитуды и ширины спектральных линий излучения позволяют определить вид излучающего вещества и физические условия в нём.[36]

Более детальный  анализ спектральных линий показал, что некоторые из них обладают тонкой структурой, то есть расщеплены на несколько близких линий. В узком смысле «тонкой структурой» спектральных линий принято называть их расщепление, происходящее из-за спин-орбитального взаимодействия между спином и вращательным движением электрона.[37]

Взаимодействие  магнитных моментов электрона и  ядра приводит к сверхтонкому расщеплению спектральных линий, которое, как правило, меньше, чем тонкое.

Если поместить  атом во внешнее магнитное поле, то также можно заметить расщепление  спектральных линий на две, три и более компонент — это явление называется эффектом Зеемана. Он вызван взаимодействием внешнего магнитного поля с магнитным моментом атома, при этом в зависимости от взаимной ориентации момента атома и магнитного поля энергия данного уровня может увеличиться или уменьшиться. При переходе атома из одного расщеплённого состояния в другое будет излучаться фотон с частотой, отличной от частоты фотона при таком же переходе в отсутствие магнитного поля. Если спектральная линия при помещении атома в магнитное поле расщепляется на три линии, то такой эффект Зеемана называется нормальным (простым). Гораздо чаще в слабом магнитном поле наблюдается аномальный (сложный) эффект Зеемана, когда происходит расщепление на 2, 4 или более линий (аномальный эффект происходит из-за наличия спина у электронов). При увеличении магнитного поля вид расщепления упрощается, и аномальный эффект Зеемана переходит в нормальный (эффект Пашена-Бака).[38] Присутствие электрического поля также может вызвать сравнимый по величине сдвиг спектральных линий, вызванный изменением энергетических уровней. Это явление известно как эффект Штарка.[39]

Если электрон находится в возбуждённом состоянии, то взаимодействие с фотоном определённой энергии может вызвать вынужденное излучение дополнительного фотона с такой же энергией — для этого должен существовать более низкий уровень, на который возможен переход, и разность энергий уровней должна равняться энергии фотона. При вынужденном излучении эти два фотона будут двигаться в одном направлении и иметь одинаковую фазу. Это свойство используется в лазерах, которые могут испускать когерентный пучок света в узком диапазоне частот.

 

4. Платон и естествознание.

  
 
Чтобы понять сущность программы Платона, направленной на науки естественного ряда, нельзя не обратиться к главному, основному ядру философии Платон – учению об идеях и диалектике, а чтобы понять это ядро, нельзя не обратиться к историко-философской ситуации, сложившейся в Древней Греции в эпоху Сократа-Платона.

Что же происходило  в Греции в эту пору? Усиленное  разложение прежнего, традиционного  общества. Старые понятия, моральные и государственные скрепы и устои становились неубедительными, даже непонятными. В это время в Афинах появились в большом количестве платные мудрецы – софисты, которые учили и доказывали, что человеческое знание зависит от индивидуальности познающего, от его чувственности, то есть от его тела, а потому объективного знания не существует. Отсюда вытекает, что не существует чего-то общего объединяющего людей, что человек должен руководствоваться своим частным интересом и произволом. Если всякая истина индивидуальна, то это в практически-нравственной сфере соответствовало убеждению в том, что индивид должен руководствоваться собственным частным интересом. Это была теория разложения до тех пор существовавшей в Греции общественной системы /1/. При этом софисты широко использовали логическое доказательство (диалектику), с успехом применяя его против непосредственности традиционной цивилизации. “Традиция имеет силу всегда лишь до тех пор, пока существует непосредственное доверие к ней. Она держится не силой оружия, не силой сознания, не силой логики и аргументов, а силой бессознательности, силой непосредственности. Непосредственность – это огромная мощь. Против нее бессильны армия, оружие, прямое нападение. Но есть враг, против которого она беспомощна. Он тихо, незаметно, подобно кроту подрывает почву, на которой стоит традиция. Враг этот – стремление рационально обсудить непосредственно данные понятия, опосредовать их, и, тем самым, по крайней мере на первом этапе знания подорвать, подвергнуть сомнению устои традиционного общества” /1/.

Платон не может  смириться с субъективностью  знания. Он типичный консерватор. Сам  он происходил из рода последнего афинского  царя Кодра, мать его – из рода знаменитого  законодателя Солона, одного из семи мудрецов. Это наложило отпечаток на его симпатии и политические утопии. Исходной темой размышлений Платона и его учителя Сократа является тема надиндивидуального слоя в сознании индивида. Если такой слой существует, то надо вскрыть его природу и тогда, по убеждению Платона, можно будет показать несостоятельность субъективизма и релятивизма теории познания софистов. Если признать рефлексию правомерной, но в то же время отказаться признать частный интерес индивида единственной реальностью на базе, которой должен быть построен новый тип общественных связей, новая форма социальности, то остается единственный путь: искать в самом сознании индивида то абсолютное, всеобщее и незыблемое начало, которое в традиционном обществе существовало в виде объективных нравов, обычаев и верований.

Этим путем  пошел Платон. Используя логику элеатов (оружие софистов) он развивает ее почти  до совершенства в диалектику, совершенно сознательно формируя важнейшие  логические и онтологические понятия и окончательно сформировывая сам гипотетико-дедуктивный метод (диалог “Парменид”).

Поиск надиндивидуального с помощью диалектики заканчивается  учением об идеях. Помимо материального  мира существует объективный мир  идей, мир чистый, вечный и бессмертный. Идеи суть определенные образцы: за всеми людьми мыслится один человек, за всеми конями – один конь, и, вообще, за всеми живыми существами – не рожденное и не гибнущее существо. Как одна печать может давать множество отпечатков, так от идеи одного человека возникает тысяча отображений. Идея есть изначальная причина того, что каждое таков, какова она сама.

Таким образом, существует мир чувственный (материальный, изменчивый) и мир умопостигаемый (идей). Каждой из этих сфер мира соответствует различный статус знания: 1) не истинное знание, а всего лишь мнение; 2) истинное знание, наука. Причем существует своя иерархия этих знаний.

Каковы же выходы философии Платона в область  естественных наук?

1. Платон и  математика.  
Математика играет исключительную роль в системе Платона, уступая лишь диалектике. “Не геометр не войдет” – написано над воротами Академии, Те, кто не были сведущи в музыке, геометрии и астрономии вообще не принимались в платоновскую Академию. Ксенократ, второй после Платона глава Академии (сколарх), сказал человеку, не знакомому ни с одной из этих наук: “Иди, у тебя нечем ухватиться за философию” /2./. Неудивительно, поэтому, что среди учеников Платона были крупные математики, такие как Архит, Теэтет, Евдокс.  
 
Альбин, написавший учебник платоновской философии, сообщает /3/: “Математику Платон допускает ради того, что она, по его мнению, изощряет мысль, оттачивает душу и позволяет достичь точности в исследовании бытия. Арифметика отучает нас от приблизительности, неопределенности и недостоверности чувственно воспринимаемого, помогает познать сущность. Так же и геометрия весьма способствует познанию блага, если, конечно, подходить к ней не ради практических целей. Крайне полезна и стереометрия. Полезна и астрономия, четвертая дисциплина, рассматривающая движение звезд по небу и самого неба, создателя ночи и дня, месяцев и лет. Пятой математической наукой является музыка”. Такова иерархия математических наук (по степени приближенности к благу).

Изучение этих дисциплин есть своего рода введение к рассмотрению сущего: в своем стремлении постичь сущее геометрия, арифметика и связанные с ними дисциплины грезят о нем, хотя и не способны увидеть его въяве. Платон сам математиком не являлся, но вокруг его группировались выдающиеся математики того времени. Евдокс, непосредственный ученик Платона, сам учитель Евклида. Архит – пифагореец, но очень близкий платоновской Академии. Явно платоновские идеи проскальзывают в мировоззрении Архимеда (стеснялся своих технических достижений). Авторитет и влияние Платона на греческих математиков было весьма велико. Как водится, в истории сохранился яркий отрицательный пример такового. Плутарх пишет: “Знаменитому и многими любимому искусству построения механических орудий положили начало Евдокс и Архит, стремившиеся сделать геометрию более красивой и привлекательной, а также с помощью чувственных, осязаемых примеров разрешить те вопросы, доказательство которых посредством одних лишь рассуждений и чертежей затруднительно…  Но так как Платон негодовал, упрекая их в том, что они губят достоинство геометрии, которая от бестелесного и умопостигаемого опускается до чувственного и вновь сопрягается с телами, требующими для своего изготовления длительного и тяжелого труда ремесленника, механика полностью отделилась от геометрии и, сделавшись одной из военных наук, долгое время вовсе не привлекала внимания философов”. Тем не менее, само отношение и высокий ранг математики в системе наук Платона, а также гипотетико-дедуктивный метод – дитя Платона, который находит в математике свой апофеоз в “Началах…” Евклида, делают вклад Платона в математику огромным.

Вторая школа (после софистов), от которой отталкивался Платон при построении своей философии  это натурфилософия. В диалоге  “Федон”, устами Сократа дается следующая характеристика натурфилософского знания:  
“В молодые годы, - говорит Сократ, - у меня была настоящая страсть к тому виду мудрости, который называют познанием природы. Мне представлялось удивительным и необыкновенным знать причину каждого явления: почему что рождается и почему погибает и почему существует. И я часто метался из крайности в крайность, и вот какие вопросы задавал себе в первую очередь: когда теплое и холодное, взаимодействуя, вызывает гниение, не тогда ли, как судили некоторые, образуются живые существа? Чем мы мыслим – кровью, воздухом или огнем? Размышлял я и о разрушении всего существующего и о переменах, которые происходят в небе и на земле, - и все для того, чтобы, в конце концов, счесть себя совершенно непригодным к такому исследованию...” ибо “…утратил понимание даже того, что до этого казалось понятным, …окончательно ослеп и разучился даже тому, что знал прежде”.  
 

Информация о работе Атомная теория