Технология изготовления плат в толстоплёночных микросхемах

Автор: Пользователь скрыл имя, 24 Января 2012 в 09:50, контрольная работа

Описание работы

За короткий исторический срок современная микроэлектроника стала одним из важнейших направлений научно-технического прогресса. Массовое производство электронных вычислительных машин высокого быстродействия, различных видов электронной аппаратуры, аппаратуры управления технологическими процессами, систем связи, систем и устройств автоматического управления и регулирования стало возможным благодаря созданию больших и сверхбольших интегральных микросхем, микропроцессоров и микропроцессорных систем.

Содержание

ВВЕДЕНИЕ 4
ЧАСТЬ I. АНАЛИТИЧЕСКИЙ ОБЗОР 5
1.1. ИНТЕГРАЛЬНЫЕ СХЕМЫ……………………………………………….5
1.2. ТРЕБОВАНИЯ К ПОЛУПРОВОДНИКОВЫМ ПОДЛОЖКАМ……….6
1.3. ХАРАКТЕРИСТИКА МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ…...7
1.4. ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ …………………………………………………………………...8
1.4.1. Получение кремния полупроводниковой чистоты…………………….8
1.4.2. Формирование слитков………………………………………………….9
1.4.3 Технология разделения слитков на заготовки………………………….11
1.4.4 Обработка поверхности заготовок с целью получения пластин………16
1.4.5 Операции разделения подложек на платы………………………………18
1.4.6 Разделение пластин на кристаллы……………………………………….20
ЧАСТЬ II. РАСЧЕТ ..24
ЧАСТЬ III. ТЕХНОЛОГИЧЕСКИЙ МАРШРУТ………………………………27
ЗАКЛЮЧЕНИЕ 28
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 29

Работа содержит 1 файл

материаловедение.doc

— 531.50 Кб (Скачать)
n="justify">   В настоящее время принята определенная последовательность операций при механической обработке пластин. При этом учитывается то, что толщина снимаемого слоя на каждой операции должна превышать толщину нарушенного слоя, который образовался на предыдущей операции. Пластины шлифуют с двух сторон, а полируют только рабочую сторону.  

   Таблица 4 — Характеристики микропорошков

Тип порошка Толщина нарушенного слоя, мкм 
 
 
 

мкм

Скорость  удаления материала, мкм/мин Класс шероховатости поверхности
М14 20 – 30 3 7
М10 15 – 25 1,5 8 – 9
АСМ3/2 9 – 11 0,5 – 1,0 12 – 13
АСМ1/0,5 5 – 7 0,35 13
АСМ0,5/0,3 Менее 3 0,25 13 – 14
АСМ0,3/0,1 Менее 3 0,2 14
 

     
 
 
 
 

Рисунок 6 — Схема плоскошлифовального  станка и расположения головок: 1— дозирующее устройство с абразивной суспензией; 2— грузы; 3— головка; 4— пластины; 5— шлифовальщик; 6— направляющий ролик 

  В целом  механическая обработка пластин, удовлетворяющих требованиям планарной технологии, приводит к большим потерям кремния (около 65%).

  Химическое  травление полупроводниковых пластин  и подложек сопровождается удалением поверхностного слоя с механически нарушенной кристаллической структурой, вместе с которым удаляются и имеющиеся на поверхности загрязнения. Травление является обязательной технологической операцией.

  Кислотное травление полупроводников в  соответствии с химической теорией идет в несколько этапов: диффузия реагента к поверхности, адсорбция реагента поверхностью, поверхностные химические реакции, десорбция продуктов реакции и диффузия их от поверхности.

  Травители, для которых самыми медленными, определяющими суммарный процесс травления этапами являются диффузионные, называются полирующими. Они нечувствительны к физическим и химическим неоднородностям поверхности, сглаживают шероховатости, выравнивая микрорельеф. Скорость травления в полирующих травителях существенно зависит от вязкости и перемешивания травителя и мало зависит от температуры.

  Травители, для которых самыми медленными стадиями являются поверхностные химические реакции, называются селективными. Скорость травления в селективных травителях зависит от температуры, структуры и кристаллографической ориентации поверхности и не зависит от вязкости и перемешивания травителя. Селективные травители с большой разницей скоростей травления в различных кристаллографических направлениях принято называть анизотропными.

  Поверхностные химические реакции при полирующем травлении проходят в две стадии: окисление поверхностного слоя полупроводника и перевод окисла в растворимые соединения. При травлении кремния роль окислителя выполняет азотная кислота:

Фтористоводородная (плавиковая) кислота, входящая в состав травителя, переводит окись кремния в тетрафторид кремния:

  Для травления, дающего зеркальную поверхность  пластин, используют смесь указанных  кислот в соотношении 3:1, температура травления 30...40°С, время травления около 15 с.

1.4.5 Операции разделения подложек на платы

      Ломка проскрайбированных пластин — весьма ответственная операция. При неправильном разламывании даже хорошо проскрайбированных пластин возникает брак: царапины, сколы, нарушение формы кристаллов и т. п.

      Разделение пластин  скрайбированием осуществляют в две стадии: вначале на поверхность пластины между готовыми микросхемами наносят в двух взаимно перпендикулярных направлениях неглубокие риски, а затем по этим рискам размалывают ее на прямоугольные или квадратные кристаллы. При сквозном разделении пластину прорезают режущим инструментом насквозь.

     Алмазное скрайбирование состоит в создании на полупроводниковой пластине между готовыми структурами рисок или разделительных канавок механическим воздействием на нее алмазного резца (рисунок 7), что приводит к образованию неглубоких направленных трещин. При приложении дополнительных усилий в процессе разламывания трещины распространяются на всю толщину пластины, в результате чего происходит разделение ее на отдельные кристаллы.

      Основным достоинством скрайбирования наряду с высокими производительностью и культурой производства является малая ширина прорези, а следовательно, отсутствие потерь полупроводникового материала. Обычно ширина риски не превышает 10¸20 мкм, а глубина 5¸10 мкм, скорость движения резца 50¸75 мм/с, нагрузка на резце 1,2¸1,4 Н.

                          

      Рисунок 7 — Скрайбирование алмазным резцом: а) — нанесение рисок; б) — пластина с рисками; в) — конструкция алмазной пирамиды (1 — режущая грань резца; 2 — дорожки для скрайбирования в слое защитного диэлектрика; 3 — полупроводниковые микросхемы; 4 — кремниевая пластина)

      Качество  скрайбирования и последующей ломки  в значительной степени зависят  от состояния рабочей части алмазного  резца. Работа резцом в изношенным режущим ребром или вершиной приводит к сколам при скрайбировании и некачественной ломке. Обычно скрайбирование выполняют резцами, изготовленными из натурального алмаза, которые по сравнению с более дешевыми резцами из синтетических алмазов имеют большую стоимость. Получили распространение резцы, имеющие режущую часть в форме трехгранной или усеченной четырехгранной пирамиды (рисунок 7, в), режущими элементами которой являются ее ребра.

     При лазерном скрайбировании (рисунок 8) разделительные риски между готовыми структурами создают испарением узкой полосы полупроводникового материала с поверхности пластины во время ее перемещения относительно сфокусированного лазерного луча. Это приводит к образованию в пластине сравнительно глубоких (до 50...100 мкм) и узких (до 25…40 мкм) канавок. Канавка, узкая и глубокая по форме, играет роль концентратора механических напряжений. При разламывании пластины возникающие напряжения приводят к образованию на дне канавки трещин, распространяющихся сквозь всю толщину пластины, в результате чего происходит ее разделение на отдельные кристаллы.

      Наряду  с созданием глубокой разделительной канавки достоинством лазерного скрайбирования является его высокая производительность (100...200 мм/с), отсутствие на полупроводниковой пластине микротрещин и сколов. В качестве режущего инструмента используют импульсный оптический квантовый генератор с частотой следования импульсов 5...50 кГц и длительностью импульса 0,5 мс.

        
Рисунок 8 — Схема лазерного скрайбирования полупроводниковой пластины
 

1.4.6 Разделение пластин на кристаллы

      Разламывание  пластин на кристаллы после скрайбирования осуществляется механически, приложив к ней изгибающий момент. Отсутствие дефектов кристаллов зависит от приложенного усилия, которое зависит от соотношения габаритных размеров и толщины кристаллов.

      Наиболее простым  способом является разламывание пластин  на кристаллы валиком (рисунок 9). Для этого пластину 3 помещают рабочей поверхностью (рисками) вниз на мягкою гибкою (из резины) опору 4 и с небольшим давлением прокатывают ее последовательно в двух взаимно перпендикулярных направлениях стальным или резиновым валиком 1 диаметром 10¸30 мм. Гибкая опора деформируется, пластина изгибается в месте нанесения рисок и ломается по ним. Таким образом, разламывание происходит в две стадии – вначале на полоски, затем на отдельные прямоугольные или квадратные кристаллы.

                                                          

      Рисунок 9 — Разламывание полупроводниковых  пластин на кристаллы валиком: 1 — валик; 2 — защитная пленка; 3 — кристалл; 4 — опора 

      Валик должен двигаться параллельно направлению  скрайбирования, иначе ломка будет  происходить не по рискам. Брак может  проявиться также в том случае, если полоски или отдельные кристаллы смещаются относительно друг друга в процессе ломки. Поэтому перед ломкой пластины покрывают сверху тонкой эластичной полиэтиленовой пленкой 2, что позволяет сохранить ориентацию кристаллов в процессе ломки и избежать произвольного разламывания и царапания друг друга. Смещения кристаллов можно также избежать, поместив пластину перед разламыванием в герметичный полиэтиленовый пакет и откачав из него воздух.

      Применяют различные  установки, в которых валики движутся строго параллельно направлению рисок и имеют регулировки нагрузки. Более совершенен способ прокатывания пластины между двумя валиками (рисунок 10), при котором обеспечивается нагрузка, пропорциональная длине скрайберной риски.

      Рисунок 10 Разламывание полупроводниковой пластины прокатыванием между валиками: 1 — пластина; 2 — упругий валик; 3 — защитная пленка; 4 — стальной валик; 5 — пленка-носитель 

      Пластину  1, расположенную рисками вверх, прокатывают между двумя цилиндрическими валиками: верхним упругим (резиновым) 2 и нижним стальным 4. Для сохранения первоначальной ориентации кристаллов пластину закрепляют на термопластичной или адгезионной пленке-носителе 5 и защищают ее рабочую поверхность полиэтиленовой или лавсановой пленкой 3. Расстояние между валиками, определяемое толщиной пластины, устанавливают, перемещая один из них.

      При прокатке более  упругий валик в зависимости от толщины пластины деформируется и к ней прикладывается нагрузка, пропорциональная площади ее поперечного сечения или длине скрайберной риски. Пластина изгибается и разламывается по рискам, вначале на полоски, а после поворота на 90° - на кристаллы.                            

                                             

      Рисунок 11 — Разламывание полупроводниковой пластины на сферической основе: 1 — сфера; 2 — пластина; 3 — резиновая диафрагма

      При разламывании на сферической опоре  (рисунок 11) пластину 2, расположенную между двумя тонкими пластичными пленками, помещают рисками вниз на резиновую диафрагму 3, подводят сверху сферическую опору 1 и с помощью диафрагмы пневмоническим и гидравлическим способами прижимают к ней пластину, которая разламывается на отдельные кристаллы. Достоинствами этого способа являются простота, высокая производительность, (ломка занимает не более 1¸1,5 мин) и одностадийность, а также достаточно высокое качество, т.к. кристаллы не смещаются относительно друг друга.

   Таблица 5 — Глубина нарушенного слоя пластин кремния после различных видов механической обработки

Вид обработки Условия обработки Глубина нарушенного  слоя, мкм
Резка алмазным кругом с внутренней режущей кромкой Зернистость режущей  кромки АСМ 60/53;n=4000мин-1; подача 1мм/мин  
20 - 30
Шлифование Свободный абразив:

     суспензия порошка ЭБМ-10

    ЭБМ-5

 
11 – 15

7 –  9

Шлифование, полирование Связный абразивный круг

АСМ – 28

Алмазная  паста:

     АСМ – 3

     АСМ – 1

     АСМ – 0,5

14 – 16 
 

6 –  9

5 –  6

1 - 2

Химико- механическое полирование Суспензия аэросила, SiO2(зерно 0,04 – 0,3 мкм)

Суспензия цеолита

1 – 1,5 

1 –  2

Информация о работе Технология изготовления плат в толстоплёночных микросхемах