Формования изделий из нанопорошков

Автор: Пользователь скрыл имя, 24 Октября 2012 в 20:26, лекция

Описание работы

Работа содержит лекции по дисциплине "Металлургия"

Работа содержит 1 файл

формования изделий из нанопорошков.doc

— 358.00 Кб (Скачать)

Методы формования изделий из нанопорошков.

Компактирование является технологическим процессом в результате которого из порошка получают готовую деталь. Процесс обычно проводят в две стадии: формовка и спекание. В ряде методов обеспечивается совмещение этих стадий в одну. Для получения объемных наноматериалов из порошков в основном используется формовка при комнатной температуре с последующим спеканием.

Методы формовки

В порошковой металлургии  в настоящее время применяются  множество технологий формовки. Для прессования нанопорошков наиболее широкое распространение получила технология одноосного прессования. Используются такие его методы как: статическое (прессование в пресс-формах или штамповка), динамическое (магнитно-импульсное и взрывное) и вибрационное (ультразвуковое) прессование. Указанные виды прессования достаточно известны, повсеместно используются при формовке обычных порошков и достаточно широко освещены в литературе.

Для получения высокоплотных  формовок используется прессование, при  котором условия сжатия материала близки к всестороннему. Эта технология получила название изостатического прессования. Существует несколько его вариантов: гидростатическое, газостатическое, квазигидростатическое. При изостатическом прессование порошка его помещают в эластичную или деформируемую оболочку. Получаемые формовки отличаются практически однородной плотностью (правда иногда во внутренних объемах формовки она несколько меньше) и не имеют выраженной анизотропии свойств. Недостатком является достаточная сложность и дороговизна оборудования и сложность выдерживания точности размеров формовки .

Гидростатическое  прессование проводят при использовании резиновых или других эластичных оболочек толщиной 0,1-2 мм. Оболочку с порошком помещают в рабочую камеру гидростата и нагнетают туда жидкость (масло, вода, глицерин и др.) под высоким давлением (от 100 до 1200 МПа). Получаемые формовки могут иметь сложную форму

Газостатическое прессование проводят при использовании металлических оболочек (капсул) из алюминия или пластичных сталей. Форма оболочек – простая, максимально приближенная к готовым изделиям. Часто газостатическому прессованию подвергают уже полученную ранее другими методами заготовку. Металлическую капсулу помещают в газостат, в рабочей камере которого создают давление до 200…300 МПа.

Квазигидростатическое прессование является упрощенным вариантом гидростатического прессования. Порошок помещают в эластичные оболочки, прессование которых проводят при одностороннем или двустороннем приложении давления в обычном прессовом оборудовании.. Материал оболочки (резиновая масса, эпоксидные смолы и т.д.) должен под давлением вести себя подобно жидкости, иметь определенную упругость и не склеиваться с порошком.

Успешно начал использоваться в последнее время и метод  интенсивной пластического деформирования – кручение под давлением. В отдельных случаях для получения лент применяют прокатку.

Методы спекания

Спекание формовок из нанопорошка ограничено невозможностью использовать высокие температуры. Повышение температуры спекания приводит к уменьшению пористости, но с другой стороны ведет и к росту зерна. Эту проблему решают рядом методов активации, позволяющих добиваться получения низкой пористости изделий при более низких температурах спекания :

  • применение высокоскоростного микроволнового нагрева (при увеличении скорости нагрева с 10 до 300 град/мин необходимая температура спекания нанопорошка TiО2 снижается с 1050 до 975 оС ;
  • ступенчатое контролируемое спекание;
  • плазмоактивированное спекание.
  • проведение спекания в вакууме или восстановительных средах (для металлических порошков)

Методы спекания под давлением

Совмещение процессов  формования и спекания или проведение спекания под давлением позволяет  достигать больших значений плотности, в том числе и близких к  теоретическому значению при использовании меньших температур нагрева. Наиболее простой способ – спекание при одноосном приложении давления. Так при проведении спекания нанопорошка железа под давлением прессования до 400 МПа температура спекания, при которой отсутствует пористость, снижается с 700 до 350 оС, а размер зерна изделий уменьшается с 1,2 мкм до 80 нм. Схема установки, разработанной в ИМЕТ РАН для спекания нанопорошков под давлением приведена на рис. 1. В случае металлических нанопорошков для активации процесс проводят в вакууме или восстановительной атмосфере.

 

Рис. 1. Схема установки, разработанной в ИМЕТ РАН для  спекания нанопорошков под давлением: 1- вход инертного или реакционного газа, 2- формовка, 3- наковальня, 4- нагревательный элемент, 5- вывод газа, 6- рабочая камера, 7- термопара, 8- пуансон, 9- сильфон, 10- герметизирующая прокладка.

 

Более прогрессивным  методом совмещения процессов формовки и спекания является горячее изостатическое прессование. Метод горячего изостатического прессования (ГИП) с использованием газостатов является универсальным и широко известен в практике порошковой металлургии [56,60]. В современных установках могут быть достигнуты давления до 300 МПа и температуры до 2000 оС. Металлические сварные капсулы для порошков изготавливают в этом случае из углеродистой или коррозионно-стойкой стали. Для простых изделий используются только стальные капсулы, а для изделий достаточно сложной формы – изготавливаемые по отдельной технологии специальные металлокерамические формы. На качество изделий влияют не только технологические параметры ГИП, но и качество изготовления капсул и процесс их заполнения порошком. Часто при заполнении порошком применяют виброуплотнение порошка, проводят дегазацию и тщательную герметизацию капсул. В случае нанопорошков из-за их большой удельной поверхности и склонности к газонасыщению проведение дегазации особенно важно.

Более дешевым вариантом, заменяющим ГИП, является так называемый метод быстрого ненаправленного компактирования. В этом процессе используется нагреваемая толстостенная цилиндрическая пресс-форма, которая после заполнения порошком подвергается одноосному сжатию под высоким давлением (до 900 МПа). При этом внешние стенки пресс-формы плотно прилегают к металлическому цилиндру соответствующих размеров, который препятствует деформации пресс-формы. В результате заполненный порошком внутренний объем, который имеет форму будущей детали, находится под квазиизостатическим давлением. Метод позволяет спрессовать металлический порошок почти до 100% плотности всего за несколько минут.

Метод высокотемпературной  газовой экструзии заключается в получении формовки гидростатическим методом при комнатной температуре, ее термической обработке в среде водорода при относительно низкой температуре и последующем экструдировании при повышенной температуре. Этот метод позволяет проводить компактирование порошков при кратковременном температурном воздействии и достаточно больших температурах. Например, компакты, полученные этим методом из никелевого нанопорошка, отличались высокими прочностными показателями при одновременных очень хороших показателях пластичности.

Метод эжекционного литья основан на добавление в порошок специальной связки (например, термопластичные полимеры типа полипропилена, полиэтилена или полистерола), которая обеспечивает малую вязкость порошковой смеси. Порошковую смесь подвергают затем литью под давлением (аналогично литью под давлением металлов и пластмасс). После получения отливки проводят выжигание термопластических веществ, а затем уже спекание. Недостатки метода связаны со сложностью процесса удаления связующих при выгорании (изменение формы детали, процессы взаимодействия продуктов разложения термопластических веществ с материалом порошка, обеспечение свободного удаления смеси при выжигании. Поэтому этот метод ограниченно используется для получения небольших специальных деталей сложной формы с толщиной стенок менее 10 мм. Вариантом метода является использование водной суспензии порошка. Суспензию отливают в форму, а затем замораживают. Просушка заготовки осуществляется в замороженном виде, а затем проводят процесс спекания.

2. Методы с  использованием аморфизации Аморфные металлические сплавы являются новым перспективным классом материалов. Аморфное состояние сплава характеризуется отсутствием дальнего порядка в расположении атомов упаковки. Такое состояние достигается сверхбыстрым охлаждением материала из газообразного, жидкого или ионизированного состояния. Существуют следующие методы получения аморфных сплавов:

  • высокоскоростное ионно-плазменное и термическое напыление материала на охлаждаемую жидким азотом подложку (позволяет получать слои толщиной до 5 мм);
  • химическое или электролитическое осаждение ионов металлов на подложку;
  • оплавление тонких поверхностных слоев деталей лазерным лучом;
  • Лазерная обработка смеси порошков при быстром отводе тпла от расплава;
  • закалка из жидкого состояния.

Последний метод в  настоящее время наиболее отработан  и исследован и является основным методом получения аморфных сплавов. Производство лент, фольг и проволок (толщиной до 100 мкм и шириной до 200 мм) проводится по схеме подачи струю жидкого металла на вращающийся водоохлаждаемый барабан (как правило медный) с гладкой поверхностью (рис. 2.). Иногда используют также схему извлечения жидкого металла из ванны расплава быстро вращающимся водоохлаждаемым диском, погруженным вертикально торцом в расплав. Еще один способ заключается в расплавлении сплава токами высокой частоты, вытягивании и быстром охлаждении аморфной нити толщиной до 200 мкм жидкой средой. В случае нанесения на нить перед охлаждением стеклообразного покрытия способ используют для получения стеклометаллических аморфных композиционных материалов. 

Возможность получения  аморфного состояния определяется химическим составом и скоростью охлаждения. Последняя обычно составляет 105-1010 оС/с. С точки зрения выбора химического состава сплава существуют два подхода.

При первом подходе для  получения аморфной структуры в  состав сплавов вводят специальные  легирующие элементы–аморфизаторы в количестве до 30 %. В качестве аморфизаторов обычно используют бор, углерод, кремний, азот и др. Другой подход связан с выбором сплавов имеющих определенную базовую эвтектику, которая образуется при взаимодействии ряда фаз-аморфизаторов. Данные фазы легируют с целью понижения температуры плавления и подавления образования зародышей кристаллов при затвердевании сплава. Этот подход позволяет получать кроме микроизделий (лент, фольг, проволок) также и объемные материалы толщиной до 5-10 мм .

Аморфное состояние сплавов является метастабильным, поэтому после аморфизации часто проводят отжиг, в процессе которого частично происходит переход к более стабильному состоянию. Однако метастабильность остается, и при нагреве до (0,4-0,65) Тпл материал переходит в кристаллическое состояние. В связи с этим наряду с аморфным большой интерес стал проявляться и к нанокристаллическому состоянию аморфизирующихся сплавов.

 

Рис. 2. Принципиальные схемы  получения аморфных лент и проволок методом быстрого охлаждения: а) закалка на вращающемся барабане, б) экстракция расплава вращающимся барабаном, в) охлаждение тонкой струи расплава жидкостью.

В ряде случаев для  получения аморфного состояния  проводят предварительную обработку (например высокоскоростную закалку) заготовок, а такие заготовки часто называют «прекурсорами».

Для ряда объемно-аморфизирующихся сплавов, например для сплавов на основе железа, возможно получение  нанокристаллической или аморфно-нанокристаллической  структуры непосредственно при закалке расплава со скоростью охлаждения немного ниже критической скорости образования аморфного состояния. Однако для большинства сплавов при таком подходе получается неоднородная, нестабильная структура. Поэтому для получения наноструктуры используется контролируемая кристаллизация сплавов из аморфного состояния при термообработке. В качестве перспективы рассматривается получение нанокристаллической структуры путем инициации процессов кристаллизации в процессе деформирования  аморфного материала.

3. Методы с использованием интенсивной пластической деформации

Эта группа методов получения наноструктурных  материалов основана на проведении пластической деформации с большими степенями  деформации в условиях высоких приложенных  давлений при относительно низких температурах. В таких условиях деформирования происходит сильное измельчение микроструктуры в металлах и сплавах до наноразмерного диапазона. При разработке этих методов существует ряд требований: преимущественное формирование ультрамелкозернистых структур с большеугловыми границами зерен (именно в этом случае наблюдаются качественные изменения свойств материалов), необходимость обеспечения стабильности свойств материала за счет однородного формирования наноструктур по всему объему материала, отсутствие механических повреждений и трещин, несмотря на интенсивное пластическое деформирование материала. Эта группа методов позволяет получать объемные безпористые металлические наноматериалы. Следует однако отметить, что диапазон размеров зерен материалов, получаемых рассматриваемыми методами, как правило, составляет все же более 100 нм. Структура, получаемая при интенсивной пластической деформации, отличается сильной неравновесностью из-за малой плотности свободных дислокаций и преимущественно большеугловом характере границ зерен. Поэтому для обработанных изделий применяют дополнительную термообработку или дополнительное пластическое деформирование при повышенных температурах и большой степени деформации.

Информация о работе Формования изделий из нанопорошков