Автор: Пользователь скрыл имя, 11 Ноября 2012 в 11:06, реферат
Глаз человека – удивительный дар природы. Он способен различать тончайшие оттенки и мельчайшие размеры, хорошо видеть днем и неплохо ночью. А по сравнению с глазами животных обладает и большими возможностями. Одни ученые говорят, что 70% всей информации от окружающего нас мира мы получаем через глаза, другие называют даже большую цифру - 90%.
Произведения искусства, литературы, уникальные памятники архитектуры стали возможны благодаря глазу. Появление и развитие органа зрения обусловлены многообразием условий окружающей среды и внутренней среды организма. Свет явился раздражителем, который привел к возникновению в животном мире органа зрения.
Зрение обеспечивается работой зрительного анализатора, который состоит из воспринимающей части – глазного яблока (с его вспомогательным аппаратом), проводящих путей, по которым изображение, воспринятое глазом, передается вначале в подкорковые центры, а затем в кору большого мозга (затылочные доли), где расположены высшие зрительные центры.
Зрение для многих животных и человека является одним из основных способов дистантной ориентировки в пространстве. С его помощью живые организмы получают информацию не только о смене дня и ночи, но и подробное изображение окружающей среды, как ближней, так и дальней.
В данной работе произведен обзор темы строение и механизм зрительной системы. Зрение как сенсорная система есть важное условие для выживания и эволюции любой популяции, потому что именно оно позволяет получить максимум знаний.
Во все времена человек всегда стремился к познанию. В современной науке явно просматривается тенденция к реализации и воплощении идей. Всегда используется какая-либо сенсорная система – будь то зрительная, обонятельная или какая либо другая. Зрительный анализатор представляет собой сложную многозвеньевую систему. Он состоит из периферического отдела – глаза, промежуточных – подкорковых зрительных центров и конечного звена – зрительного центра в коре головного мозга. Все уровни зрительной системы соединены друг с другом проводящими путями.
ВВЕДЕНИЕ
Глаз человека – удивительный дар природы. Он способен различать тончайшие оттенки и мельчайшие размеры, хорошо видеть днем и неплохо ночью. А по сравнению с глазами животных обладает и большими возможностями. Одни ученые говорят, что 70% всей информации от окружающего нас мира мы получаем через глаза, другие называют даже большую цифру - 90%.
Произведения искусства, литературы, уникальные памятники архитектуры стали возможны благодаря глазу. Появление и развитие органа зрения обусловлены многообразием условий окружающей среды и внутренней среды организма. Свет явился раздражителем, который привел к возникновению в животном мире органа зрения.
Зрение обеспечивается работой зрительного анализатора, который состоит из воспринимающей части – глазного яблока (с его вспомогательным аппаратом), проводящих путей, по которым изображение, воспринятое глазом, передается вначале в подкорковые центры, а затем в кору большого мозга (затылочные доли), где расположены высшие зрительные центры.
Зрение для многих животных и человека является одним из основных способов дистантной ориентировки в пространстве. С его помощью живые организмы получают информацию не только о смене дня и ночи, но и подробное изображение окружающей среды, как ближней, так и дальней.
В данной работе произведен обзор темы строение и механизм зрительной системы. Зрение как сенсорная система есть важное условие для выживания и эволюции любой популяции, потому что именно оно позволяет получить максимум знаний.
Во все времена человек всегда стремился к познанию. В современной науке явно просматривается тенденция к реализации и воплощении идей. Всегда используется какая-либо сенсорная система – будь то зрительная, обонятельная или какая либо другая. Зрительный анализатор представляет собой сложную многозвеньевую систему. Он состоит из периферического отдела – глаза, промежуточных – подкорковых зрительных центров и конечного звена – зрительного центра в коре головного мозга. Все уровни зрительной системы соединены друг с другом проводящими путями.
1. СТРОЕНИЕ ГЛАЗА
Глаз позвоночных животных имеет шарообразную (или близкую к таковой) форму. Он образован несколькими оболочками. Склера – плотная наружная непрозрачная соединительнотканная оболочка – в передней части глазного яблока переходит в прозрачную роговую оболочку, или роговицу. Под склерой лежит сосудистая оболочка, образованная сетью кровеносных сосудов. Спереди сосудистая оболочка утолщается и переходит сначала в ресничное тело и далее – в радужную оболочку, которые состоят из гладких мышечных волокон, кровеносных сосудов и пигментных клеток. Мышечные волокна ресничного тела прикреплены к склере. В центре радужной оболочки расположено отверстие – зрачок. С внутренней стороны сосудистой оболочки находится слой клеток пигментного эпителия, к нему прилегает самая внутренняя оболочка глаза – сетчатая оболочка, или ретина, выполняющая основную функцию глаза – преобразование светового раздражителя в нервное возбуждение и первичную обработку сигнала. Волокна самой внутренней части сетчатки переходят в зрительный нерв. Между роговой и радужной оболочками расположена полость, наполненная жидкостью, - передняя камера глаза. За радужной оболочкой находится прозрачное тело, имеющее форму двояковыпуклой линзы, - хрусталик, прикрепленный к ресничному телу. За хрусталиком вся полость глазного яблока заполнена студенистым содержимым – стекловидным телом.
1.1 Строение сетчатки
Сетчатка(retina)- cсветовоспринимающий аппарат глаза – выстилает заднюю и боковые внутренние поверхности глазного яблока. Сетчатка состоит из 10 слоев.
Наружная часть сетчатки (та, что прилегает к сосудистой оболочке и ограничена слоем пигментных клеток) образована специальными светочувствительными клетками – фоторецепторами. У большинства позвоночных фоторецепторы различаются по своей форме и называются палочками и колбочками.
Центральная часть сетчатки представлена биполярными клетками, имеющих по два относительно длинных отростка, одним из которых они контактируют с фоторецептрами, другим – с гаyглиозными клетками сетчатки, которые в свою очередь, составляют ее внутреннюю часть. Таким образом фоторецепторы, биполяры и ганглиозные клетки представляют собой три последовательных звена переработки зрительной информации. На уровне между рецепторами и биполярами имеются специализированные клетки с горизонтальным расположением отростков, которые регулируют предачу возбуждения от рецепторов к биполярам, они называются горизонтальными. Между биполярами и ганглиозными клетками, располагаясь как бы симметрично горизонтальным, находятся так называемые амакриновые склетки, котрые «управляют» передачей электрических сигналов от биполяров к ганглиозным клеткам. Наконец, аксоны гаглиозных клеток формируют зрительный нерв, который пронизывает сетчатку в противоположном направлении и входит в полость черепа. В месте вхождения в сетчатку зрительного нерва фоторецепторы отсутствуют, эта область получила название слепого пятна.
Рассмотрим более детально строение каждого из основных структурных элементов сетчатки.
1.2 Фотрецепторы
Фоторецепторы – это один из видов сенсорных органов (систем), отвечающие за зрение. Именно возможностями фоторецепторов определяется оптическая ориентация животных в пространстве.
Фоторецепторные клетки содержат пигмент (обычно это родопсин), который под действием света обесцвечивается. При этом изменяется форма молекул пигмента, причем в отличие от выцветания, с каким мы встречаемся в повседневной жизни, такой процесс обратим. Он ведет к электрическим изменениям в рецепторной мембране.
Сетчатка имеет инвертированное, т.е. перевернутое, строение. Фоторецепторы лежат у сосудистой оболочки, и свет попадает на них, пройдя через слой нейронов главным образом ганглиозных и биполярных клеток. Ганглиозные клетки примыкают к стекловидному телу, и их аксоны проходят по внутренней поверхности сетчатки к слепому пятну, где они образуют зрительный нерв и выходят из глаза. Биполярные клетки – это нейроны, соединяющие ганглиозные клетки с фоторецепторами.
Фоторецепторы делятся на два типа – палочки и колбочки. Палочки, более вытянутые по сравнению с колбочками, очень чувствительны к слабому освещению и обладают только одним типом фотопигмента - родопсином. Поэтому палочковое зрение бесцветное. Оно также отличается малой разрешающей способностью (остротой), поскольку много палочек соединено только с одной ганглиозной клеткой. То, что одно волокно зрительного нерва получает информацию от многих палочек, повышает чувствительность в ущерб остроте. Палочки преобладают у ночных видов, для которых важнее первое свойство.
Колбочки наиболее чувствительны к сильному освещению и обеспечивают острое зрение, так как с каждой ганглиозной клеткой связано лишь небольшое их число. Они могут быть разных типов, обладая специализированными фотопигментами. поглощающими свет в различных частях спектра. Таким образом, колбочки служат основой цветового зрения. Они наиболее чувствительны к тем длинам волн. которые сильнее всего поглощаются их фотопигментами. Зрение называют монохроматическим, если активен лишь один фотопигмент, например в сумерках у человека, когда работают только палочки.
Дихроматическим зрение бывает при наличии двух активных фотопигментов, как у серой белки (Sciurus carolinensis). Каждая длина волны стимулирует оба типа колбочек, но в разной степени в соответствии с их относительной чувствительностью в этой части спектра. Если мозг может распознавать такую разницу, животное различает длину волны света по его интенсивности. Однако эти определенные отношения возбудимости характерны более чем для одной части спектра, поэтому некоторые длины волн воспринимаются одинаково. Это происходит также при особых формах цветовой слепоты у человека. Длина волны, одинаково возбуждающая оба типа колбочек (в области пересечения кривых поглощения), воспринимается как белый цвет и называется «нейтральной точкой» спектра. Такое смешение меньше выражено в зрительных системах с тремя типами цветовых рецепторов или при трихроматическом зрении), известном у многих видов, в том числе у человека. Однако некоторое смешение происходит и здесь: можно, например, вызвать впечатление любого цвета посредством разных сочетаний трех монохроматических составляющих, специально подобранных по интенсивности и насыщенности. Без этого было бы невозможно зрительное восприятие цветной фотографии и цветного телевидения.