Теория старения

Автор: Пользователь скрыл имя, 14 Декабря 2011 в 18:25, реферат

Описание работы

Механизм старения универсален. Признаки старения у всех млекопитающих сходны - изменение гормонального статуса, стирание зубов, поседение и облысение, накопление межклеточного коллагена и др. В процессе старения важную роль играет не только генетический механизм, но и его взаимодействие с вредными факторами внешней среды. По данным А. И. Потапенко и А. П. Акифьева (1999), ионизирующее излучение укорачивает продолжительность жизни, а антиоксиданты - увеличивают.

Содержание

Введение………………………………………………………………………………3
Роль генетических факторов в старении.,…………………………………………..3
"Предел Хейфлика", теория маргинотомии, теломеры и теломераза…………….4
Апоптоз и продолжительность жизни………………………………………………5
Свободнорадикальная теория старения…………………………………………….6
Голодание……………………………………………………………………………..7
Термодинамическая теория старения……………………………………………….8
Элевационная теория старения……………………………………………………...9

Работа содержит 1 файл

медбиология реферат.docx

— 39.50 Кб (Скачать)

                  Содержание. 

Введение………………………………………………………………………………3

Роль генетических факторов в старении.,…………………………………………..3

"Предел Хейфлика", теория маргинотомии, теломеры и теломераза…………….4

Апоптоз и продолжительность жизни……………………………………………5

Свободнорадикальная теория старения…………………………………………….6

Голодание……………………………………………………………………………..7

Термодинамическая теория старения……………………………………………….8

Элевационная теория старения……………………………………………………...9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение.

Механизм старения универсален. Признаки старения у всех млекопитающих сходны - изменение  гормонального статуса, стирание зубов, поседение и облысение, накопление межклеточного коллагена и др. В процессе старения важную роль играет не только генетический механизм, но и  его взаимодействие с вредными факторами  внешней среды. По данным А. И. Потапенко и А. П. Акифьева (1999), ионизирующее излучение укорачивает продолжительность жизни, а антиоксиданты - увеличивают. Первопричины процесса старения выявляются на разных уровнях, включая макромолекулярный, надмолекулярный, органельный, тканевой, органный, уровень старения физиологических систем.

Роль  генетических факторов в старении.

Существует группа наследственных заболеваний (прогерий), для которых ускоренное старение само по себе является основным нозологическим признаком; их частота обычно не превышает 1 случай на 10 миллионов населения. Выделяют 2 основные формы наследственных прогерий: прогерию детей (синдром Хатчинсона-Гилфорда) и прогерию взрослых (синдром Вернера). По материалам В. М. Михельсона (1996) и И. М. Спивака с соавт. (1999), оба синдрома проявляются ускоренным развитием обычных признаков естественного старения. Однако в 1-м случае они начинают развиваться с рождения, и больные редко доживают до 20 лет; во 2-м случае ускоренное старение начинается с периода полового созревания, и продолжительность жизни может достигать 30 - 40 лет. Больные рано начинают выглядеть старообразно, резко седеют и теряют волосы, имеют кожные изменения, ранние морщины, "старческий" голос - все это позволяет говорить об ускоренном старении.

Существование наследственных болезней преждевременного старения - прогерий - подтолкнуло ученых к поиску гена, ответственного за процессы старения. В экспериментах O.Sugawara и соавт. (1990) показано, что клеточное старение - результат генетической программы, с помощью которой специфические гены ограничивают клеточную пролиферацию. Повреждения ядерной и митохондриальной ДНК соматических клеток (метилирование, точечные мутации) накопление с возрастом таких мутаций в различных органах и тканях является основным фактором, определяющим развитие возрастной патологии, включая рак. O.Toussaint, J.Remacle (1994) предложили концепцию критического порога накопления ошибок (теория "disposable soma"), принимающую во внимание защитную роль систем репарации.

Эффективность репаративных систем ДНК не снижается с возрастом. По данным В. Н. Анисимова (1993), при старении репарационные системы ДНК становятся более подверженными ошибкам, приводящим к усилению индукции мутаций. Ген белка р53 также чрезвычайно важен как для контроля эволюции раковых клеток, ограничивая их бесконтрольный рост, так и для клеточного старения, выполняя функцию удаления старых, нефункционирующих клеток. Установлено, что если нормальный р53 участвует в контроле тканевого роста за счет активации генов, вовлеченных в подавление роста, его мутантные формы могут препятствовать этому процессу и инициировать образование опухоли. Злокачественная трансформация возникает вследствие накопления 5 - 6 и более соматических мутаций в одном и том же клеточном клоне. Для аккумуляции критического количества генетических повреждений в онкогенах необходимо время, поэтому злокачественные заболевания характерны преимущественно для второй половины жизни человека. По-видимому, декомпенсация стареющего организма, выражающаяся в иммунологических и гормонально-метаболических нарушениях, является вспомогательным фактором, способствующим пролиферации трансформированных клонов.

Не забыта до сих пор одна из первых генетических гипотез о механизме старения - гипотеза о плейотропности действия генов. В ее основе лежит предположение о том, что действие некоторых генов имеет противоречивые последствия: будучи полезными в начале жизни, эти гены со временем становятся смертельно опасными для их обладателя. Естественный отбор закрепляет эти гены благодаря их полезному действию или необходимости для молодых особей.

"Предел Хейфлика", теория маргинотомии, теломеры и теломераза.

Хейфлик и Мурхед (1961) доказали, что даже в идеальных условиях культивирования фибробласты эмбриона человека способны делиться только ограниченное число раз (50 ±10), после чего их способность к пролиферации исчерпывается, причем в таком состоянии они способны находиться длительное время. Данное свойство, названное клеточным старением ("лимит Хейфлика"), наследуется генетически и не зависит от условий культивирования клеток. А. М. Оловников предложил теорию маргинотомии. В соматических клетках при каждой репликации из-за особенностей работы ферментов репликации (ДНК-полимеразы) недореплицируются концы хромосом - теломеры. Так, в результате постоянного укорочения хромосом при каждом митозе недорепликация захватывает области генома, существенные для выживания клеток, что и приводит к гибели клеток и старению организмов. В 1985 г. была открыта теломераза. Установлено, что репрессия теломеразы определяет клеточное старение в культуре ("лимит Хейфлика") и клетки больных синдромом преждевременного старения имеют укороченные теломеры. При введении теломеразы в клетки фибробластов человека, которые в норме делятся лишь 75 - 80 раз, данные клетки способны делиться 280 раз без каких-либо признаков старения и патологии. Не вызывает сомнения, что многие делящиеся в организме клетки, в том числе фибробласты человека, не успевают за человеческую жизнь полностью исчерпать "лимит Хейфлика". В связи с этим А. М. Оловников (1999) считает "лимит Хейфлика", при всей его абсолютной достоверности, лабораторным феноменом. Основное свойство теломеразы - контроль клеточного деления, а для возникновения опухолевого роста необходимы дополнительные мутации и факторы.

При старении происходит не качественное, а количественное изменение различных признаков, число которых огромно. Согласно фонтанной теории ионной модуляции экспрессии генов, их продуктивность меняется в зависимости от поступления ионов из перинуклеарной цистерны внутрь ядра через предполагаемые фонтанные РНК - (фРНК)-зависимые ионные (кальциевые и цинковые) каналы внутренней ядерной мембраны. Когда теломеры становятся в стареющих клетках слишком короткими, фРНК-зависимые ионные каналы могут стать недоступными для субтеломерных генов. Это может количественно менять продуктивность соответствующих генов и служить фактором клеточного старения (Оловников А. М., 1999).

Апоптоз и продолжительность жизни.

 Апоптоз - программированная клеточная гибель (ПКГ). Для организма в целом "безопаснее" иметь механизмы элиминации генетически поврежденных клеток, чем риск возникновения очагов неконтролируемого автономного роста. В многоклеточном организме апоптоз выступает как неотъемлемая компонента механизмов поддержания клеточного гомеостаза, тесно связанная с митозом. Выбор конкретной "стратегии" организма - репарации ДНК, блокады пролиферации или апоптоза, зависит во многом от типа клеток, их локализации, микроокружения, характера повреждающего фактора и степени повреждения. В любом случае эффективный ответ на Повреждение ДНК является ключевым звеном для выживания многоклеточного организма. Однако между рассматриваемыми явлениями имеются и существенные различия: если при апоптозе в течение нескольких часов происходят гибель и дезинтеграция клеток, то при старении, несмотря на остановку деления, клетки длительно сохраняют свою жизнеспособность. Еще одно отличие между двумя состояниями заключается в том, что индуцирование апоптоза внешними сигналами происходит вне зависимости от возраста клеток, в то время как темпы реализации программы старения целиком определяются числом предшествующих удвоений клеточной популяции. Принципиальное значение имеет тот факт, что клетки при старении не только прекращают деление, но одновременно приобретают устойчивость к индукторам апоптоза. Общеизвестно, что основным механизмом гибели клеток под влиянием химиотерапевтических агентов является апоптоз. Инициация апоптоза в ответ на генотоксические повреждения происходит при участии продукта гена р53. Поэтому мутации гена р53 сопряжены с повышенной резистентностью к химиопрепаратам и радиации. Апоптоз выступает в качестве одного из механизмов, защищающих организм от клеток, несущих генетические повреждения, предрасполагающие к злокачественной трансформации .В коже пожилых людей имеется большое количество стареющих фибробластов. Кроме того, кожа пожилых высоко чувствительна к канцерогенному действию ультрафиолета, а также у нее снижена способность к заживлению ран. Накопление в тканях с возрастом резистентных к апоптозу стареющих клеток, возможно, приводит к аккумуляции множественных повреждений, а впоследствии - к неоплазии, нейродегенеративным процессам или вторичной смерти, например, вследствие инфаркта миокарда.

Таким образом, анализ взаимосвязи апоптоза и старения показывает, что одним из проявлений процесса старения является поломка механизма регуляции апоптоза. Данное нарушение лежит в основе клеточного старения и находит свое отражение в виде нарушения клеточного гомеостаза при "нормальном" старении и при формировании возрастной патологии.

Свободнорадикальная теория старения

Одна из плодотворно развивающихся в последние годы фундаментальных теорий; она выдвинута практически одновременно D.Harman (1956) и Н. М. Эмануэлем (1958). Суть теории: старение обусловлено повреждением макромолекул клеток под действием собственных свободных радикалов (СР), которые в норме образуются в качестве побочных продуктов метаболизма в каждой клетке. Согласно этой теории, продуцируемые в митохондриях клеток молекулы СР вызывают повреждения мембран, коллагена, ДНК, хроматина, структурных белков, а также участвуют в эпигенетической регуляции экспрессии ядерных и митохондриальных генов, приводя к метилированиюДНК, влияют на внутриклеточный уровень кальция и т.д. Подсчитано, что за 70 лет организм человека производит около 1 т радикалов кислорода, хотя только 2 - 5% вдыхаемого с воздухом кислорода превращается в его токсические радикалы. Подавляющее большинство из них нейтрализуется еще до того, как успеют повредить те или иные компоненты клетки. Так, по данным Л. К. Обуховой (1999), из 1 млн. образующихся супероксидных радикалов от ферментной защиты ускользает не более 4. Если бы не существовало механизмов инактивации СР, то они вызывали бы быстрое разрушение биологических структур. К основным эндогенным факторам антиоксидантной защиты (АОЗ) организма относятся некоторые ферменты и витамины: каталаза (катализирующая разложение Н2 О2 до воды и кислорода), глутатионпероксидаза (делающая то же самое, но с использованием восстановленного глутатиона GSH в качестве второго субстрата), β-каротин, витамин Е-α-токоферол (предположительно, перехватывающий перекисные радикалы RO2 ), витамин С, или аскорбиновая кислота (предположительно для реактивации витамина Е), мочевая кислота, мелатонин, хелатные агенты и фермент супероксиддисмутаза (СОД) - катализирующий дисмутацию O2 в водорода пероксид (Н2 О2 ), защищающий субклеточные структуры от этих радикалов - Си, Zn-СОД (СОД1 ) в цитозоле, Mn-СОД (СОД2 ) - в митохондриях и Fe-СОД - в аэробных бактериях.

Для тканей старых животных, в особенности - сердца и  скелетных мышц, характерна гипоксия. Возможно, в клетках тканей старых животных действительно есть относительно много "плохих" митохондрий, которые  служат интенсивными генераторами радикалов  кислорода in situ. По данным В. К. Кольтовера (1988, 1998), в результате кратковременной аноксии/ишемии возрастает способность семихиноновых радикалов коэнзима Q к автоокислению кислородом. Можно предположить, что непосредственной причиной снижения надежности работы электрон-транспортных цепей (ЭТЦ) в поврежденных митохондриях служит рост флуктуационной подвижности мембранных белков, с которыми связаны молекулы коэнзима Q.По-видимому снижение активности СОД и других компонентов АОЗ в преклонном возрасте отражает возрастное снижение интенсивности окислительного метаболизма. Если же старение сопровождается какой-либо патологией, то активность СОД и других компонентов АОЗ не снижается или даже несколько повышается с возрастом. Такие возрастные особенности могут отражать интенсификацию свободнорадикальных процессов в соответствующих органах и тканях. Кроме того, на АОЗ, как и на другие ферментные системы организма, влияет работа эндокринной системы.Один из механизмов антиоксидантного действия может быть опосредован окисью азота (NO) и гормональной регуляцией редокс-гомеостаза (кортикотропином, кортикостероидами, тиреотропином и трийодтиронином). Антиоксидантом является и мелатонин, который эффективно обезвреживает не только наиболее токсичный радикал кислорода - гидроксильный радикал, но и нейтрализует окись азота, анион пероксинитрита, синглетный кислород и, частично, пероксильный радикал. Наряду с непосредственной способностью связывать свободные радикалы мелатонин также может стимулировать активность некоторых антиокислительных ферментов, таких как супероксиддисмутаза, глутатионпероксидаза и глюкозо-6-фосфатдегидрогеназа. Уровень мелатонина уменьшается с возрастом .Однако убыль природных антиоксидантов может быть восполнена применением их синтетических аналогов (структурный аналог витамина В6 или хлоргидрат 2-этил-6-метил-3-оксипиридин), которые в функциональном отношении близки к природным. Ограничение калорийности пищи. M.Djawdan и соавт. (1996) указывают, что количественные соотношения между плодовитостью и продолжительностью жизни, предсказанные теоретически, не совпадают с полученными в эксперименте. Ресурсы, одновременно необходимые для размножения и увеличения продолжительности жизни, содержатся в питательной среде, и только при их недостатке увеличение плодовитости снижает продолжительность жизни. Один из способов предупреждения старения - снижение калорийности пищи. Возможным механизмом влияния такой диеты является снижение концентрации глюкозы в крови и уменьшение неэнзиматического присоединения глюкозы к долгоживущим белкам, их окислительное повреждение, обусловленное свободными радикалами. Нуклеотиды и ДНК также подвергаются неэнзиматическому гликозилированию, что приводит к мутациям из-за прямого повреждения ДНК и инактивации систем репарации ошибок рекомбинации, это также вызывает повышенную ломкость хромосом . Например, в коллагене, содержащем большое количество глюкозы, было обнаружено увеличение количества связей у пожилых по сравнению с молодыми людьми. Увеличение связей в коллагене снижает его эластичность, что на молекулярном уровне может быть причиной утолщения базальной мембраны и влиять на продолжительность жизни.Установлено, что именно общее снижение потребления калорий, а не какого-либо ингредиента пищи определяет геропротекторный эффект.  

Голодание.

Гипокалорийная диета стимулирует апоптоз, который элиминирует пренеопластические клетки в тканях организма, замедляет накопление в них мутаций, а также развитие возрастной патологии, включая возникновение новообразований . Предполагается, что в механизмах увеличения продолжительности жизни при ограничении калорийности питания основную роль играют такие факторы, как замедление роста, уменьшение содержания жира в теле, снижение нейроэндокринных и иммунологических возрастных сдвигов, увеличение репарации ДНК, изменение скорости биосинтеза белков и экспрессии генов, снижение температуры тела и темпов основного обмена, ослабление окислительного стресса. Важнейший эффект ограниченного по калорийности питания - уменьшение интенсивности свободнорадикальных процессов. 

Термодинамическая теория старения.  

Согласно этой теории, в онтогенезе эволюционные процессы на любом иерархическом  уровне протекают в направлении  наибольшей "термодинамической востребованности", что соответствует принципу наименьшего принуждения . Эта тенденция является причиной изменения надмолекулярного и химического состава, а также морфологической структуры тканей при старении. Термодинамическая теория старения позволяет сформулировать принципы создания диет и ряда лекарственных препаратов, замедляющих процесс старения, способствующих профилактике и лечению ряда патологий, в том числе "болезней пожилого возраста". Омолаживание конкретного организма (органа, функциональной системы или какой-либо локальной зоны биоткани) возможно (на фоне постоянных генетических характеристик данного организма) только за счет изменений условий (параметров) среды его обитания. Омолаживание разных тканей при изменении природы и типа пищи, медицинских и косметических средств наблюдается через различное время. Так, существенное омолаживание жировых компонентов биотканей (липидных структур) может проявиться уже спустя 1 - 2 мес после начала изменения природы используемых в пище жиров. Заметное омолаживание коллагеновой ткани должно наблюдаться только через несколько месяцев после введения в диету белков,содержащих повышенное количество коллагена молодых животных. Многие сравнительно низкомолекулярные вещества (гормоны, другие метаболиты, лекарства, косметические средства) могут проявлять омолаживающий эффект сравнительно быстро. Если изменить режим питания, увеличивая в диете количество непредельных жирных кислот, то липосодержащие надмолекулярные структуры (ткани) могут омолаживаться. Вытеснение высокоплавких жирных кислот и жиров низкоплавкими омолаживает биоткани. Все это происходит в соответствии с законами термодинамики. Есть основание полагать, что омолаживание липидных, белковых и других структур биомассы должно способствовать омолаживанию хроматина и ДНК. Возможно вмешательство в структуру генов с помощью таких соединений, концентрации которых высоки в тканях молодых организмов и эмбрионов.

Информация о работе Теория старения