Автор: Пользователь скрыл имя, 11 Февраля 2012 в 21:42, реферат
Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са2+, которые накапливаются в саркоплазматической сети.
Введение.........................................................................................................3
I. ТЕОРИИ МЕХАНИЗМА МЫШЕЧНОГО СОКРАЩЕНИЯ.................4
II. БИОХИМИЧЕСКИЕ ОСНОВЫ СОКРАЩЕНИЯ МЫШЦ................12
Список использованной литературы.........................................................17
Министерство образования и науки РФ
Чувашская
государственная
Реферат
по дисциплине «Цитология, гистология и эмбриология»
на тему: «Теория «Скольжения» Р. Девиса и гипотеза «Скользящей модели» (Д. Хэнсон, Х. Хаксли). Биохимические основы сокращение мышц»
Чебоксары
2011 г.
Содержание
Введение................
I. ТЕОРИИ МЕХАНИЗМА МЫШЕЧНОГО СОКРАЩЕНИЯ.................4
II. БИОХИМИЧЕСКИЕ ОСНОВЫ СОКРАЩЕНИЯ МЫШЦ................12
Список
использованной литературы....................
Введение.
Вся жизнедеятельность животных и человека неразрывно связана с механическим движением, осуществляемым мышцами. Сокращение мышц является процессом, иллюстрирующим сопряжения функции (энергетических процессов) и структуру (механизмов, участвующих в сокращении) живой клетки.
Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са2+, которые накапливаются в саркоплазматической сети.
Данные
механизмы сокращения мышц в течение долгого
времени изучались учеными, которые в
следствие проводимой ими работы, выстраивали
разнообразные теории, подтверждающие
в той или иной степени деятельность мышц.
Эти теории, а так же биохимические основы
сокращения мышц, мы рассмотрим в данной
работе.
I. ТЕОРИИ МЕХАНИЗМА МЫШЕЧНОГО СОКРАЩЕНИЯ.
До получения данных о тонкой структуре мышц процессы мышечного сокращения пытались объяснить деформацией изолированных молекулярных цепей белков, т. е. удлинением или укорочением отдельных белковых молекул или агрегатов молекул. Часто данные о деформации различных полимеров переносили на мышечное сокращение, без учета структуры мышечных волокон.
Известно
много полиэлектролитных
Во всех этих моделях изменение длины полимеров происходит в основном в результате изменения электростатического взаимодействия между звеньями полимера или между витками спирали и случае спиральных структур.
Существует множество гипотез, пытающихся объяснить мышечное сокращение на основе свойств индивидуальных молекулярных цепей сократительных белков. Все эти гипотезы исходят из представления, что в основе сокращения мышцы лежат процессы конформационных изменений структуры белковых цепей. Так, Мейер еще в 1929 г. выдвинул гипотезу, согласно которой мышечное сокращение обусловлено деформацией пептидных цепей вследствие изменения электростатического взаимодействия ионогенных групп СООН и NH2 при изменении рН.
В настоящее время считают, что изменение рН при возбуждении миофибрилл недостаточно, чтобы вызвать конформационные переходы белков, по может быть достаточно для освобождения ионов кальция, которые уже могут вызвать деформацию белковой цепи.
Согласно другому представлению, акт сокращения представляет собой конформационный переход белковой структуры от α-конфигурации, когда нити линейно вытянуты, к β-конфигурации, когда нити собраны в клубок.
Однако эти гипотезы не смогли объяснить реальную картину сложного строения мышечного волокна на молекулярном уровне, полученную в последнее время. Возможно, что при медленном сокращении гладких мышц происходит фактическая деформация (активное сокращение отдельных протофибрилл) белковых цепей, как считает Г.М.Франк, однако для сокращения скелетных мышц гораздо более обоснованными являются представления, исходящие из гипотезы скольжения нитей.
Г.Хаксли и Хэнсон выдвинули гипотезу скольжения нитей. Ими было отмечено, что в широком интервале деформаций как при сокращении, так и при растяжении миофибрилл ширина А-диска остается постоянной. Напротив, при изменении длины саркомера изменяется ширина I-диска. Светлая Н–зона в А-диске также изменяется, но замечательно, что до тех пор, пока она существует, расстояние от конца одной Н-зоны через Z-мембрану до начала следующей Н-зоны (а это расстояние равно длине тонких нитей в миофибрилле) также остается постоянным. Если вспомнить, что А-диски образованы нитями миозина, а тонкие нити состоят их актина, то можно заключить, что в большой области деформаций мышцы длина миозиновых и актиновых нитей остается постоянной. Это можно объяснить только тем, что при сокращении мышцы нити просто скользят друг относительно друга без изменения своей длины.
При сильном сокращении мышцы в середине А-диска появляется плотная зона, причем ширина этой зоны увеличивается по мере сокращения мышцы. Эта плотная зона появляется после полного исчезновения Н-зоны. Уменьшение Н-зоны при сокращении вызывается скольжением тонких нитей навстречу друг другу к центру А-диска. Измерив расстояние от Z-мембраны до противолежащего конца ноной плотной зоны (полосы сокращения), Г. Хаксли и Хэпсон обнаружили, что оно равно половине длины тонкой протофибриллы. На этом основании они предположили, что новая зона соответствует тому участку саркомера, где концы противолежащих тонких нитей перекрываются друг с другом. Это предположение подтвердилось тем, что на микрофотографии поперечного среза мышцы в области новой плотной зоны было обнаружено в 2 раза больше тонких нитей, чем в остальной области А-диска. Кроме того, при сильном сокращении мышцы, после исчезновения I-диска в области Z-мембран также появляются темные полосы. Это объясняется тем, что миозиновые нити достигают Z-мембран и после этого происходит их деформация.
В дальнейшем данные электронного микроскопирования были подтверждены результатами рентгеноструктурного анализа. Основные рефлексы рентгенограммы не изменяются при сокращении мышц. Это указывает на то, что длина нитей при сокращении не меняется. Приведенные данные очень важны, так как в отличие от электронно-микроскопических исследований, проводимых на фиксированных препаратах мышц, рентгенографические исследования проводились и на живых сокращающихся мышцах, и на нефиксированных ее препаратах.
Перемещение
тонких нитей относительно толстых
происходит, при помощи мостиков, соединяющих
миозиновые нити с актиновыми. Так
как изменений в длине толстых
и топких нитей во время сокращения
не происходит, то из модели скольжения
нитей вытекает, что конформационные изменения,
порождающие движение, должны происходить
в указанных мостиках, связывающих толстые
и тонкие нити. Весь процесс сокращения
имеет циклический характер. Миозиновые
мостики прикрепляются к активным участкам
актиновых нитей и под действием энергии
гидролиза АТФ укорачиваются или изменяют
угол наклона к миозиновым нитям, что приводит
к определенному перемещению нитей друг
относительно друга. Затем происходит
отсоединение мостиков в данных участках
актиновых нитей и присоединение их в
новых участках. Этот циклический процесс
повторяется многократно, в результате
чего происходит непрерывное перемещение
нитей друг относительно друга. Рентгенографические
исследования подтвердили предположение
о движении мостиков. По мнению Г.Хаксли,
расщепление одной молекулы АТФ приводит
к одному замыканию и размыканию мостиков
и к перемещению нитей на один элементарный
участок.
Рис.1.
Схема, показывающая степень перекрывания
нитей миозина и актина в поперечнополосатом
мышечном волокне при различной длине
саркомера
Величина напряжения, развиваемого мышцей, определяется количеством замыкаемых (функционирующих) мостиков. Если мышца преодолевает при сокращении внешнюю силу, то замыкается такое количество мостиков, которое необходимо для уравновешивания этой силы. Максимальная сила, развиваемая мышцей, определяется количеством мостиков, которые могут замыкаться в данных условиях. Исходя из этих представлений, нетрудно объяснить обратную зависимость напряжения, развиваемого мышцей при сокращении, от скорости сокращения. Для того чтобы мостики замкнулись, необходимо какое-то время. При увеличении скорости скольжения нитей количество замыкаемых мостиков уменьшается, что обусловливает уменьшение напряжения, развиваемого мышцей.
В зависимости от длины саркомеров длина участков, в которых нити актина и миозина перекрываются друг с другом, будет различной и, следовательно, будет различно количество мостиков, участвующих и создании напряжения, развиваемого мышцей. Учитывая, что максимальная сила миофибриллы определяется количеством функционирующих мостиков, следует ожидать, что максимальная сила изометрического сокращения миофибриллы будет изменяться с изменением длины саркомера. При длине саркомера 3,65 мкм нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу. Под силой сокращения следует понимать разность между общей силой, развиваемой при раздражении мышцей, и упругой восстанавливающей силой, обусловленной эластическими элементами мышцы в случае се растяжения сверх нормальной длины. По мере сближения Z-мембран нити актина все глубже проникают в промежутки между нитями миозина и, наконец, при расстоянии 2,2 мкм все мостики миозиновых нитей приходят в контакт с нитью актина. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональна степени перекрывания нитей. При дальнейшем укорочении волокна число мостиков, которые могут замыкаться, не изменяется и сила должна оставаться постоянной, пока длина саркомера не уменьшится до 2,05 мкм. В этот момент нити актина сходятся своими концами и сила должна убывать вследствие того, что тонкие нити, которые проникли дальше середины А-диска, будут неправильно ориентированы по отношению к миозиновым мостикам. Сила должна постепенно убывать, пока расстояние не достигнет 1,65 мкм, когда концы миозиновых нитей приходят в соприкосновение с Z-мембранами. При дальнейшем сокращении нити миозина должны деформироваться; сила должна убывать быстрее и совсем исчезать, когда актиновые нити доходят до противолежащих Z-мембран.
Все
эти предположения
Рис.2.
Зависимость силы сокращения поперечнополосатого
мышечного волокна от длины саркомера
Однако,
несмотря на большие успехи в изучении
механизма мышечного
В настоящее время имеется ряд гипотез, пытающихся объяснить конкретный механизм взаимодействия актиновых и миозиновых нитей.
Наиболее
глубоко разработанной и
При
возбуждении мышцы