Современные медицинские технологии, их роль и возможности внедрения

Автор: Пользователь скрыл имя, 04 Ноября 2012 в 09:00, реферат

Описание работы

Среди современных медицинских технологий, находящихся на страже здоровья человека ведущее место принадлежит телемедицине. Главной задачей которой является реализация права человека на получение квалифицированной медицинской помощи в любом месте, в любое время.
Телемедицина - логическое развитие первых консультаций по телефону, существовавших в начале века и является перспективным направлением информатизации общества.

Работа содержит 1 файл

Современные медицинские технологии.doc

— 82.00 Кб (Скачать)

В России довольно интенсивно развиваются  локальные медицинские информационные системы (МИС) и сети. В настоящее  время широко применяются в практике медицины компьютеризированные истории  болезни и системы классификации  терминов. При этом важную роль играет язык общения между базами данных и терминология.

На повестке дня стоит создание территориальных, а затем глобальных МИС.

Развитие информационных технологий и современных коммуникаций, появление  в клиниках большого количества автоматизированных медицинских приборов, следящих систем и отдельных компьютеров привели к новому витку интереса и к значительному росту числа медицинских информационных систем (МИС) клиник, причем, как в крупных медицинских центрах с большими потоками информации, так и в медицинских центрах средних размеров и даже в небольших клиниках или клинических отделениях. Только в США затраты клиник в этой области составляют около 8,5 млрд. долл. в год, и по оценкам специалистов ожидается рост затрат до 12-14 млрд. долл. в связи с планируемой заменой или модернизацией устаревших МИС.

Современная концепция информационных систем предполагает объединение электронных  записей о больных (electronic patient records) с архивами медицинских изображений  и финансовой информацией, данными  мониторинга с медицинских приборов, результатами работы автоматизированных лабораторий и следящих систем, наличие современных средств обмена информацией (электронной внутрибольничной почты, Internet, видеоконференций и т.д.).

По мнению сотрудников американского института медицинских записей (Medical Records Institute, USA), фактически можно выделить 5 различающихся уровней компьютеризации для МИС.

ПЕРВЫМ уровнем МИС являются автоматизированные медицинские записи. Этот уровень характеризуется тем, что только около 50% информации о пациенте вносится в компьютерную систему, и в различном виде выдается ее пользователям в виде отчетов. Иными словами, такая компьютерная система является неким автоматизированным окружением вокруг "бумажной" технологии ведения пациента. Такие автоматизированные системы обычно охватывают регистрацию пациента, выписки, внутрибольничные переводы, ввод диагностических сведений, назначения, проведение операций, финансовые вопросы, идут параллельно "бумагообороту" и служат прежде всего для разного вида отчетности.

ВТОРЫМ уровнем МИС является система компьютеризированной медицинской  записи (Computerized Medical Record System). На этом уровне развития МИС те медицинские документы, которые ранее не вносились в  электронную память (прежде всего  речь идет об информации с диагностических приборов, получаемой в виде различного рода распечаток, сканограмм, топограмм и пр.), индексируются, сканируются и запоминаются в системах электронного хранения изображений (как правило, на магнитооптических накопителях). Успешное внедрение таких МИС началось практически только с 1993 г.

ТРЕТЬИМ уровнем развития МИС является внедрение электронных медицинских  записей (Electronic Medical Records). В этом случае в медицинском учреждении должна быть развита соответствующая инфраструктура для ввода, обработки и хранения информации со своих рабочих мест. Пользователи должны быть идентифицированы системой, им даются права доступа, соответствующие их статусу. Структура электронных медицинских записей определяется возможностями компьютерной обработки. На третьем уровне развития МИС электронная медицинская запись может уже играть активную роль в процессе принятия решений и интеграции с экспертными системами, например, при постановке диагноза, выборе лекарственных средств с учетом настоящего соматического и аллергического статуса пациента и т.п.

На ЧЕТВЕРТОМ уровне развития МИС, который авторы назвали системами  электронных медицинских записей (Electronic Patient Record Systems или же по другим источникам Computer-based Patient Record Systems), записи о пациенте имеют гораздо больше источников информации. В них содержится вся соответствующая медицинская информация о конкретном пациенте, источниками которой могут являться как одно, так и несколько медицинских учреждений. Для такого уровня развития необходима общегосударственная или интернациональная система идентификации пациентов, единая система терминологии, структуры информации, кодирования и пр.

ПЯТЫМ уровнем развития МИС называют электронную запись о здоровье (Electronic Health Record). Она отличается от системы электронных записей о пациенте существованием практически неограниченных источников информации о здоровье пациента. Появляются сведения из областей нетрадиционной медицины, поведенческой деятельности (курение, занятия спортом, пользование диетами и т.д.).

На сегодня очевидно может быть реализован первый, второй либо третий уровень развития МИС. Следующий  уровень может быть достигнут  в небольших регионах к 2000 г., но в  целом, вероятно, он не будет внедрен  в систему здравоохранения до 2005 г.

В 1993 г. в Москве создана информационная система онкологических больных. Созданы  видеоархивы учебных материалов на базе цифрового видео и современных  ПК технологий.

Существует интегрированная система  информационного обеспечения управления здравоохранением Москвы, содержащая данные по кадрам, учету, статистике, территориальный и учрежденческий уровень.

Разработана многоуровневая компьютерная система мониторинга туберкулеза  в России. При этом используются гибкие универсальные программные  оболочки и комплект базовых взаимосвязанных информационных структур. Оболочки СУБМД "BARCLY", "CARMADON", FOXPRO 2.5 и др.

Госсанэпидемнадзор разрабатывает  программные комплексы для работы своих баз данных, экспертных систем. Программное обеспечение реализовано в операционной среде MS-DOS, имеет графический многооконный пользовательский интерфейс с системой интерактивной помощи, поддержку работы в локальной вычислительной сети. Создана компьютерная база данных по медико-санитарному обслуживанию населения. Она внедряется повсеместно. Стоимость на одного пациента составляет примерно 200 дол. США.

Служба крови г. Екатеринбурга  создала центр крови "САНГВИС", функционирующий с 1995 г. С 1998 г. организованы общедоступные консультации с использованием сервера (http://www.sanguis.ru/Consult/index. asp). На начальном этапе это был первый сервер службы крови России. Поэтому важен был сам факт его наличия и пополнения. На следующем этапе на первый план были выдвинуты задачи информационного наполнения сервера с ориентацией на пользователей.

Для "внешних" (не сотрудников "Сангвиса") и внутренних пользователей были сделаны различные домашние страницы, что позволило использовать Web-сервер и как основу внутрифирменной  сети (Интранет), и как средство распространения  информации в Интернет. Для сотрудников "Сангвиса" были созданы такие элементы как доска объявлений, внутренние справочники и базы данных. В выделенной области сервера собраны популярные информационные материалы по данной проблеме. В отдельном окошке каждый желающий может ввести свой вопрос, который будет немедленно отправлен Главному трансфузиологу. Вопрос будет рассмотрен специалистом и ответ направлен по электронной почте. Здесь же собраны полезные ссылки на относящиеся к данной тематике источники. Постоянно накапливается, обновляется и доступен для просмотра перечень наиболее часто задаваемых вопросов и ответов на них.

В 1997 г. в Пензенской области завершены  работы по созданию медицинской информационной сети, которая позволяет всем лечебным учреждениям области пользоваться медицинской информацией.43% вызовов были сняты после консультаций по телефону, 12% вызовов были отсрочены ввиду отсутствия опасности, 45% выездов по вызовам после консультаций были выполнены.

Разрабатывается система социально-гигиенического мониторинга в Москве, мониторинга окружающей среды.

В Украине внедрена автоматизированная система мониторинга эпидемического процесса, состоящая из информационно-поисковой  системы, системы обработки информации, системы управления, корпоративной  телекоммуникационной среды, каналов сети общего пользования и сети Интернет. В системе имеются данные по инфекциям, отравлениям, службе скорой помощи.

Международные информационные сети

Компьютерные локальные информационные системы объединяются с помощью  сети Интернет. Первая распределенная информационная система была создана по токсикологии в 1953 г. в Чикаго. В настоящее время существуют общедоступные базы данных POISINDEX, TOXNET, MEDLINE, EUROTXNET и др. c подробнейшей сопроводительной информацией по применению. Особенно Интернет полезен для пациентов, которые могут, практически, обратиться ко всему мировому сообществу за помощью. Статистика показывает, что большинство пациентов обращаются по вопросам онкологии. В США существует некоммерческая организация Med Help International (http://medhlp.netusa.net). Доступ к серверу свободен и возможен обмен информацией между пациентами и врачами.

Телемедицина становится средством  интеграции технологий, знаний, сотрудничества, развития общества. Это естественный процесс, начавшийся как бы спонтанно в разных странах в связи с общими для многих стран задачами.

Интенсивность развития телемедицины в последние годы связана как  с экономическими, так и с технологическими причинами. Мобильность населения, распределенность знаний, медицинского диагностического оборудования и квалифицированных медицинских специалистов обусловили рост рынка телемедицинских услуг, спрос на которые эффективно удовлетворяется благодаря созданию адекватных телекоммуникационных и информационно-вычислительных систем и технологий.

Источники финансирования телемедицины самые разнообразные: множество  проектов целиком финансируется  из внутренних источников, в то же время  для крупных проектов, требующих  значительной затраты средств на создание инфраструктуры, необходима государственная поддержка. Телемедицина может успешно использоваться во всех специальностях, и трудно найти такую область медицины, в которой ее применение было бы невозможно.

Телемедицина находит также  общественное признание как одно из направлений современной медицины и все чаще упоминается в средствах массовой информации, на страницах научных и популярных журналов, в интернетовских сайтах.

 

Выводы

Телемедицинские системы и комплексы  развиваются во всем мире интенсивно, обеспечивая эффективную медицинскую  помощь практически в любой точке Земли.

Телемедицинские сети разделяются  на общедоступные и профессиональные. Первые опираются на сеть Интернет, вторые - на выделенные каналы связи  или каналы сетей общего пользования. Системы становятся международными и общедоступными.

Основными протоколами в телемедицинских  сетях являются ISDN, TCP/IP, ATM.

Основными каналами связи являются спутниковые и оптоволоконные. Интенсивно развиваются телемедицинские услуги с использованием спутниковых транспортабельных  комплексов.

Существенное влияние на развитие телемедицины и ее комплексов оказывает  решение задач стандартизации информационных систем, систем хранения и обработки  информации.

В телемедицинских сетях обеспечивается интегральность услуг, включающих медицинские  и образовательные вопросы.

 

Список литературы

1.    Macedonia C. R., Collea J. V., Sanders J. H. Telemedicine comes to obstetric and gynecology. OB/Gynecology Today. 1999,vol.3, # 1,pp.22-30.

2.    Григсби Д., Сандерс Д.Х. Телемедицина: уровень развития и перспективы. Международный журнал медицинской практики. 1999, № 3, стр.52-56.

3.    Информационные технологии и интеллектуальное обеспечение медицины 98. Доклады 5-го Международного форума. Турция, 1998г.

4.    18 Международная ежегодная конференция TeleCon. 1998 г.

5.    Григорьев А.И., Саркисян А.Э. Шаги к медицине будущего. Компьютерные технологии в медицине. 1996, № 2, стр.14-18.

6.    Рональд С. Меррелл, Джеймс С. Россер. Теленаставничество. Компьютерные технологии в медицине. 1996, № 2, стр.24-27.

7.    Алдаров А.Т., Егоркина Т.И. Состояние и перспективы развития телемедицины в Российской Федерации. Информационные технологии и интеллектуальное обеспечение медицины - 98. Доклады 5-го Международного форума. Турция, 1998 г., стр.6-11.

8.    Сагайдак В.В. Опыт внедрения автоматизированной информационной системы онкологических больных. Информационные технологии и интеллектуальное обеспечение медицины - 98. Доклады 5-го Международного форума. Турция, 1998 г., стр.34-35.

9.    Телемедицина. Новые информационные технологии на пороге 21 века. Санкт-Петербург, 1998 г. Институт информатики и автоматизации РАН. Под ред.Р.М. Юсупова и Р.И. Полонникова.

10. Кувакин  В.И., Иванов А.Ю., Лядов В.Р. Принципы  и пути построения информационной  инфраструктуры военной медицины  на основе индивидуальных носителей информации. Материалы научно-практической конференции. Санкт-Петербург, 1995 г., стр.68-69.

11. Емелин  И.В. О стандартах электронного  обмена медицинскими документами.  Компьютерные технологии в медицине. № 1, 1996г., стр.44-48.

12. Кевин Вудвард. Информационные системы и реформа здравоохранения в России. Компьютерные технологии в медицине. № 1, 1997г., стр.26-29.


Информация о работе Современные медицинские технологии, их роль и возможности внедрения