Осмотическое и онкотическое давление. Изотонический коэффициент. Гипо-, гипер- и изотонические растворы

Автор: Пользователь скрыл имя, 03 Марта 2013 в 09:13, реферат

Описание работы

Для того чтобы дать определения осмотического и онкотического давления, сначала нужно понять что же такое осмос. Осмос (греч. osmos толчок, проталкивание, давление) — самопроизвольный переход вещества, обычно растворителя, через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или от раствора меньшей концентрации. Впервые осмос наблюдал Жан-Антуа Нолле в 1748, однако исследование этого явления было начато спустя столетие.

Работа содержит 1 файл

осмотическое и онкотическое давление. изотонический коэффициент..docx

— 46.92 Кб (Скачать)

При введении в кровь (внутривенно  или внутриартериально) лекарственных веществ или солевых растворов, нужно обеспечивать одинаковое их осмотическое давление с осмотическим давлением крови.

Физиологические растворы все  же не равноценны плазме крови, так  как не содержат высокомолекулярных коллоидных веществ, которыми являются белки плазмы. Поэтому к солевому раствору с глюкозой прибавляют различные  коллоиды, например водорастворимые высокомолекулярные полисахариды (декстран), или особым образом обработанные белковые препараты. Коллоидные вещества добавляют в количестве 7-8%. Такие растворы вводят человеку, например, после большой кровопотери. Однако наилучшей кровезамещающей жидкостью все же является плазма крови.[3, 112c]

Онкотическое давление крови – часть осмотического давления,  создаваемого белками плазмы. Онкотическое давление в основном обусловлено альбуминами.  Вследствие  малых размеров и  высокой  гидрофильности  они обладают  выраженной  способностью

притягивать к себе воду, за счет чего она удерживается в  сосудистом  русле,

При снижении онкотического давления крови происходит выход воды  из  сосудов в интерстициальное пространство, что приводит к отеку тканей.

 

Роль онкотического давления

Тем не менее онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками.

 

 

Изотонический коэффициент

Смысл параметра ясен из определения  каждого из коллигативных параметров: они зависят от концентрации в растворе частиц растворённого вещества. Неэлектролиты в растворе недиссоциируют, стало быть, каждая   молекула неэлектролита образует в растворе лишь одну частицу. В свою очередь, электролиты в растворе под влиянием сольватации частично или полностью распадаются на ионы , образуя при этом несколько частиц на одну диссоциировавшую молекулу. Соответственно, и коллигативные свойства данного раствора (аддитивные величины) зависят от содержания в нём частиц (ионов) каждого типа из тех, которым принадлежат частицы, образовавшиеся в растворе в результате диссоциации исходной молекулы, — раствор представляется как бы смесью растворов каждого из типов частиц.                  Например, раствор хлорной извести содержит три типа частиц - катионы кальция, хлорид-анионы и гипохлорит-анионы. Итак, изотонический коэффициент показывает, насколько в растворе электролита больше частиц по сравнению с раствором неэлектролита аналогичной концентрации, и связан со способностью вещества распадаться в растворе на ионы, то есть, со степенью диссоциации. Если формульная единица или молекула содержит n ионов (или атомов при полярных связях, в растворе превращающихся в ионы), количество исходных молекул равно N, а степень диссоциации соединения — α, то количество диссоциировавших молекул равно N·α (при этом образуются N·α·n ионов), а общее количество частиц в растворе равно ((N — N·α) + N·α·n).

Изотонический же коэффициент равен отношению:

.

Изотонический коэффициент  в растворах сильных электролитов

Поскольку сильные электролиты диссоциируют практически полностью, можно было бы ожидать для них изотонический коэффициент, равный количеству ионов (или поляризованных атомов) в формульной единице (молекуле). Однако в действительности этот коэффициент всегда меньше определённого поформуле. Например, изотонический коэффициент для 0,05-молярного раствора NaCl равен 1,9 вместо 2,0 (для раствора сульфата магния той же концентрации и вовсе i = 1,3). Это объясняет теория сильных электролитов, разработанная в 1923 году П.Деьаевым и Э.Хюккелем: передвижение ионов в растворе затруднено образовавшейся оболочкой сольватации. К тому же, ионы взаимодействуют и между собой: разноимённо заряженные притягиваются, а одноимённо заряженные — отталкиваются; силы взаимного притяжения приводят к образованию групп ионов, перемещающихся по раствору совместно. Такие группы называют ионными ассоциатами или ионными па́рами. Соответственно, раствор ведёт себя так, будто содержит меньше частиц, чем на самом деле, ведь свобода их перемещения ограничена. Наиболее очевиден пример, касающийся электропроводности растворов λ, которая возрастает с разбавлением раствора. Через отношение реальной электропроводности к таковой при бесконечном разбавлении определяют мнимую степень диссоциации сильных электролитов, также обозначаемую через α:

,

где nimg — мнимое, а ndisslv. — реальное количество частиц в растворе.

Влияние внешних факторов

Очевидно, что взаимодействие ионов  уменьшается с повышением температуры (вследствие возросшего теплового движения частичек), а также с уменьшением их концентрации, то есть, разбавлением раствора, ведь тогда уменьшается вероятность встречи двух частичек. Экстраполируя разбавление в сторону бесконечности, коэффициент i стремится к своему максимальному значению, определяемому по формуле растворённого соединения. Степень диссоциации α, в соответствии с вышеупомянутой формулой зависимости между i и α, одновременно возрастает, приближаясь к единице (1).

Изотонический коэффициент был введён в последней  четверти XIX века Я. Х. Вант-Гоффом. В 1901 году он первым получил Нобелевскую премию по химии — за свои заслуги в изучении растворов.

 

Изо-, гипо- и гипертонические растворы.

  Влияние растворов, содержащих различную концентрацию непроникающих веществ, на объем клетки показано на рисунке. Если поместить клетку в такую жидкость с осмолярностью 282 мосм/л, клетка не будет ни сморщиваться, ни набухать, поскольку содержание воды по обе стороны клеточной мембраны одинаково, а растворенные вещества не способны входить или выходить из клетки.

Раствор, в котором не происходит изменение объема клетки, называют изотоническим. Это, например, крайне важный для клиники 0,9% раствор NaCl. Вводить его в кровь можно без опасения нарушить равновесие между внутри- и внеклеточной жидкостями.

Если клетку поместить  в раствор непроникающих веществ с концентрацией ниже 282 мосм/л, т.е. в гипотонический раствор, вода с помощью диффузии будет входить в клетку и вызывать ее набухание. Движение воды будет происходить до тех пор, пока осмолярность по обе стороны мембраны не станет одинаковой. Растворы NaCl, концентрация которых ниже 0,9%, относят к гипотоническим, они вызывают набухание клеток.

Помещение клетки в раствор с высокой концентрацией непроникающего вещества, т.е. в гипертонический раствору приведет к движению воды из клетки наружу, таким образом концентрируя внутриклеточную и разбавляя внеклеточную жидкости. В данном случае клетка будет сморщиваться до тех пор, пока концентрации не выровняются. Растворы NaCl с концентрацией выше 0,9% являются гипертоническими.

Изо-, гипер- и гипоосмолярные растворы.

  Термины «изотонический»у «гипотонический»у «гипертонический» показывают, что будет происходить с клетками при погружении в эти растворы. Тоничность растворов зависит от концентрации веществ, для которых мембрана непроницаема. Некоторые растворенные вещества, однако, способны проникать через мембрану. Вне зависимости от того, способно ли вещество проникать через клеточную мембрану, растворы с такой же осмолярностью, как и цитоплазма клетки, называют изоосмолярными.

Термины «гиперосмолярный» и «гипоосмолярный» относят к растворам, осмолярность которых без оценки проницаемости наружной мембраны клетки соответственно выше или ниже осмолярности обычной внеклеточной жидкости. К временному изменению равновесия между внутри- и внеклеточной жидкостями способны вещества с высокой проницаемостью, например мочевина. Однако с течением времени равновесие восстанавливается, практически не влияя на гомеостаз.

Быстрое достижение равновесия между внутри- и внеклеточной жидкостями. Перенос жидкости через мембрану происходит настолько быстро, что различия в осмолярности между этими двумя средами исчезают в течение нескольких секунд или, самое большее, нескольких минут. Быстрое перемещение воды через мембрану не означает скорого наступления полного равновесия между внутри- и внеклеточной жидкостями в организме.

Это можно объяснить тем, что обычным путем поступления жидкости в организм является всасывание в полости желудочно-кишечного тракта, где она должна быть перенесена кровью ко всем тканям перед установлением осмотического равновесия, которое наступает лишь примерно через 30 мин после приема жидкости.

Изотонические растворы (изоосмотические  растворы) — растворы, имеющие одинаковое осмотическое давление. Если два раствора не изотоничны, то раствор с большим осмотическим давлением (см.) называют гипертоническим, а раствор с меньшим осмотическим давлением — гипотоническим. 
           В физиологии и медицине изотонические растворы принято называть растворы, осмотическое давление которых равно осмотическому давлению крови, лимфы. Попадая в организм, изотонические растворы не нарушают нормального функционирования клеток и тканей. Для человека изотонические растворы будут, например, 0,9% раствор хлорида натрия, 5% раствор глюкозы. Изотонические растворы хлорида натрия вводят внутривенно для увеличения кровяного давления после больших кровопотерь, для возмещения объема жидкости в организме при сильном обезвоживании (ожоговая болезнь, обильные рвоты и т. п.). Изотонические растворы, приближающиеся по составу, величине рН, буферным и другим свойствам к сыворотке крови, называемые физиологическими растворами, используются в качестве кровезаменителей. 

 

Вывод:

Осмос – явление  уравновешивания концентрации растворов, путем проникновения молекул  через полупроницаемую мембрану. Жизнедеятельность живых организмов напрямую связана с осмосом и  осмотическим давлением. Благодаря  осмосу, осуществляется транспортировка  веществ в организмах и растениях. Оболочки клеток представляют собой  перепонки, легко проницаемые для  воды, но почти не проницаемые для  веществ растворённых во внутриклеточной жидкости. Проникая в клетки, вода создаёт в них избыточное давление, которое слегка растягивает оболочки клеток и поддерживает их в напряжённом состоянии. Вот почему такие мягкие органы растения, как стебли, листья, лепестки цветов обладают упругостью. Если срезать растения, то вследствии испарения воды объём внутриклеточной жидкости уменьшается, оболочка клеток опадает, становится дряблой и растение вянет. Но стоит только поставить в воду начавшее вянуть растение, как начинается осмос, оболочки клеток снова напрягаются и растение принимает прежний вид. 
Осмос также одной из причин , обусловливающих поднятие воды по стеблю растения, питания клеток и многие другие явления. 
При измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и его температуры, но не зависит ни от природы растворённого вещества, ни от природы растворителя.

 

 

 

Литература: 

Горшков В. И., Кузнецов И. А., Физическая химия, М., 1986; Дуров В. А., Агеев Е.П., Термодинамическая теория растворов неэлектролитов, М., 1987. См. также лит. при ст. Мембранные процессы разделения.

Еремин В. В., Каргов С. И., Успенская И. А., Кузьменко Н. Е., Лунин В. В. Основы физической химии. Теория и задачи: учеб. пособие для вузов. — М.: Издательство «Экзамен», 2005. — 480 с. — (Серия «Классический университетский учебник»). — ISBN 5-472-00834-4

Kokars, V. Vispārīgā ķīmija (1. daļa). Rīga: RTU izdevniecība, 2009. 286 lpp.  

 

 

 

 

 


Информация о работе Осмотическое и онкотическое давление. Изотонический коэффициент. Гипо-, гипер- и изотонические растворы