Автор: Пользователь скрыл имя, 11 Декабря 2011 в 23:06, реферат
Понятие нанотехнологии прочно входит в нашу жизнь, а еще в 1959 г. знаменитый американский физик-теоретик Ричард Фейнман говорил о том, что существует "поразительно сложный мир малых форм, а когда-нибудь (например в 2000 г.) люди будут удивляться тому, что до 1960 г. никто не относился серьезно к исследованиям этого мира". На первом этапе развитие нанотехнологии определялось в основном созданием устройств зондовой микроскопии. Эти устройства являются своеобразными глазами и руками нанотехнолога.
Введение 3
Подход "Сверху вниз" 5
"Мокрая" нанотехнология 6
Молекулярная нанотехнология 11
Нанороботы 15
Наноманипуляторы 17
Современные перспективы наноустройств в медицине 19
Наночипы 21
Заключение 24
Список литературы 25
Гипотетические наноустройства, способные к перемещению в окружающей среде и снабженные бортовой системой управления получили название нанороботов. Они смогут быть использованы для решения огромного количества задач - диагностики и лечения любых болезней, включая старение, перестройки организма человека "по заказу", изготовления сверхпрочных конструкций вплоть до лифтов "Земля - орбита" и, даже, "Земля - Луна", терраформирования других планет и т.д.
Идеи молекулярной нанотехнологии встречают и сильное противодействие. Наиболее известным критиком является лауреат Нобелевской премии 1996 г. по химии Ричард Смайли. В ходе ряда дискуссий в печати с Э. Дрекслером Смайли признал некоторые из ранее критиковавшихся им положений молекулярной нанотехнологии; некоторые другие расхождения можно будет, вероятно, разрешить только путем эксперимента.
Вообще, именно невозможность в настоящее время экспериментально изготовить хотя бы простейшие из теоретически рассчитанных деталей-молекул является наиболее слабым местом молекулярной нанотехнологии. Нужно сказать, что современные методы расчета свойств крупных молекул далеки от совершенства, а точное решение соответствующей задачи квантовой механики на много порядков превосходит по своей сложности возможности сегодняшних компьютеров. Так что, окончательный ответ о возможности построения таких наноустройств может дать только эксперимент.
Кроме того, что окончательная конфигурация атомов в детали должна быть устойчива, устойчивыми должны быть и все промежуточные стадии ее изготовления. Пока не ясно, приведет ли это к серьезным ограничениям.
Более сложные устройства могут выполнять такие функции, как всеобъемлющая диагностика, "охота" за возбудителями инфекций и раковыми клетками, разрушение атеросклеротических отложений на стенках сосудов, восстановление поврежденных или постаревших тканей и отдельных клеток. Рассмотрим более подробно некоторые проблемы, которые могут встать при конструировании реальных нанороботов и наметим подходы к их решению:
Молекулярная нанотехнология может также позволить достичь огромной плотности записи информации. Дрекслер предлагает использовать в качестве ее носителя линейные молекулы частично фторированного полиэтилена - цепочку атомов углерода, с которыми соединены два атома углерода, два атома водорода или по одному атому того и другого. Каждое звено такой цепочки несет чуть больше полутора бит информации (в случае использования только двух типов звеньев - -CH2 - и - СHF - ровно один бит), а полная плотность записи достигнет фантастического значения в ~15 бит/нм3, т.е., ~15Ч1021 бит/см3.
Можно предположить, что в будущем будут придуманы и другие, еще более эффективные методы диагностики.
По прогнозам исследовательской корпорации Форрестер [21], в период с 2005 по 2010 г. основное развитие нанотехнологии будет определяться медицинскими предложениями. В этот период медицинские товары приблизят нанотехнологии к рядовому потребителю.
Потребители нуждаются в совершенствовании диагностики. Работодатели и страховые компании озабочены состоянием здоровья сотрудников, поэтому последние, в свою очередь, нуждаются в более совершенной диагностике и терапии - не только тех болезней, которые у них уже есть, но и тех, к которым они предрасположены.
Наносенсоры станут звеном перехода к индивидуализированной медицине. Используя свои нанотехнологические средства - GeneEngine - компания Дженомикс из США уже обнаружила вариации генов на цепочках ДНК, это 200000 основных пар в длину. Компания прогнозирует возможность расшифровки всего генома человека, состоящего из 3 млн. пар. При этом будут использоваться возможности индивидуализированной терапии с применением нанотехнологической доставки лекарств (компании БиоСанте Фармасьютиклз или С Сиксти).
Создание новых линий производства приведет к снижению цен. Сегодня такие компании как Роше Дайагностикс используют технологию цепной реакции полимеразы для диагностики и выявления таких заболеваний как ВИЧ и гепатит. Система диагностики, созданная из нанокристаллов, подобных квантовым точкам, обещает большую точность и снижение стоимости путем использования методов производства, разработанных для полупроводниковой промышленности [2].
Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.
В настоящее время созданы прототипы нескольких вариантов "нанопинцета". В одном случае использовались две углеродные нанотрубки диаметром 50 нм, расположенные параллельно на сторонах стеклянного волокна диаметром около 2 мкм. При подаче на них напряжения нанотрубки могли расходиться и сходиться наподобие половинок пинцета.
В другом случае использовались молекулы ДНК, меняющие свою геометрию при конформационном переходе, или разрыве связей между нуклеотидными основаниями на параллельных ветвях молекулы.
Однако манипулятор для нанообъектов может и отличаться своим устройством от макроинструментов. Так, была продемонстрирована возможность перемещать нанообъекты с помощью луча лазера. В недавней работе ученых Корнельского и Массачусетского университетов им удалось "размотать" молекулу ДНК с нуклеосомы. При этом они тянули ее за конец с помощью такого "лазерного пинцета".
Микро - и наноустройства В настоящее время все большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей.
Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несет на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.
Устройства такого рода было бы неправильно относить к области наномедицины. Однако, открываются широкие перспективы их дальнейшей миниатюризации и интеграции с наносенсорами описанных выше типов, бортовыми системами управления и связи на основе молекулярной электроники и других нанотехнологий, источниками энергии, утилизирующими вещества, содержащиеся во внутренних средах организма. В дальнейшем такие устройства могут быть снабжены приспособлениями для автономной локомоции и даже манипуляторами того или иного рода. В этом случае они окажутся способны проникать в нужную точку организма, собирать там локальную диагностическую информацию, доставлять лекарственные средства и, в еще более отдаленной перспективе, осуществлять "нанохирургические операции" - разрушение атеросклеротических бляшек, уничтожение клеток с признаками злокачественного перерождения, восстановление поврежденных нервных волокон и т.д. [1].
Исследователи из медицинского центра Джона Хопкинса разработали самособирающиеся контейнеры кубической формы, по размерам не превышающие пылинку. Такие контейнеры могут служить для доставки лекарств в организме человека. Они являются относительно недорогими, и могут производиться в массовом порядке в процессе, объединяющем технологию изготовления чипов с простой химией. Кроме того, благодаря своей металлической структуре, положение контейнеров внутри тела может отслеживаться с помощью магнитного резонанса.
Методика создания таких контейнеров, а также результаты успешных лабораторных испытаний были опубликованы в декабрьском выпуске журнала Biomedical Microdevices. В экспериментах контейнеры удерживали и отпускали микрокапли веществ и живые клетки, то есть то, что широко используется в медицинском лечении.
Новый процесс создания трехмерных контейнеров для захвата отдельных клеток и доставки медикаментов это принципиальное новое устройство, которое приведет к поколению 'умных таблеток'.
Микроконтейнеры, разработанные в лаборатории, в будущем будут содержать и электронные компоненты. Это позволит им действовать в качестве биосенсоров в теле человека или же высвобождать лекарства в ответ на поступивший извне радиосигнал.
Чтобы создать контейнеры, лучше всего начать с методик, применяемых в микроэлектронике: осаждение тонких пленок, фотолитография и электроосаждение
Затем исследователи поместили на края квадратов 'крючки' из металлического припоя для того, чтобы скрепить их. При быстром нагревании припой плавился, и его поверхностное натяжение стягивало соседние квадраты вместе, тем самым, образуя куб. После охлаждения припой застывал, и форма куба сохранялась. Чтобы быть уверенными в том, что наша заготовка действительно свернулась в куб, мы должны располагать 'крючки' очень точно. Но зато такая самоорганизующаяся методика позволяет создавать большое количество контейнеров одновременно и достаточно дешево'.
Созданные контейнеры покрыты ультратонким слоем золота, так что они вряд ли смогут вызвать токсический эффект в теле человека. Пока не проводилось тестов по их введению в живые организмы, но ученые уже провели лабораторные исследования, показавшие, как микроконтейнеры могут работать в медицине.
Ученые использовали микропипетки для введения внутрь кубов суспензии, содержащей микрокапли лекарств. Было показано, что высвобождение содержимого может выполняться через колебания куба. Кроме того, исследователи помещали внутрь и человеческие клетки, которые продолжали там жить.
Для определения местоположения контейнеров с использованием магнитного резонанса были проведены исследования под руководством Баржо Гими (Barjor Gimi). В эксперименте контейнеры двигались по S-образному каналу. Было установлено, что врачи могут использовать неинвазивную методику для того, чтобы определять, где находятся контейнеры с лекарством. Наконец, некоторые контейнеры, содержащие никель, могут направляться под действием магнитного поля в заданную область человеческого тела [3].
Наночипы к атомно-силовому микроскопу используются для диагностики инфекционных и соматических заболеваний. Метод атомно-силовой микроскопии основан на мониторинге сил Ван-дер-Ваальса между измерительным элементом-иглой микроскопа (размер чувствительного элемента имеет порядок 1-10 нм) и сканированной поверхностью макромолекулы. Анализ взаимодействия позволяет получить изображение макромолекулы, определить ее размеры и выявить комплексы молекул зондов с маркерами заболеваний - например, белок-партнер, антиген-антитело. В России производятся серийные одноканальные атомно-силовые микроскопы (АСМ), позволяющие проводить исследования структуры материалов. Биологические макромолекулы, в том числе и макромолекулярные маркеры заболеваний, активизируются в узких диапазонах температур, давлений и влажности. Поэтому для создания наночипов к одноканальному АСМ с иммобилизованными в определенном порядке биомолекулами (антигенами, антителами, аптамерами, олигонуклеотидными зондами), которые могут селективно захватывать маркеры заболеваний из биологической жидкости на уровне единичных молекул, что очень важно для ранней диагностики, например, онкологических, инфекционных и других заболеваний, необходимо адаптировать серийный атомный силовой микроскоп.