Автор: Пользователь скрыл имя, 29 Октября 2011 в 14:42, контрольная работа
4. Обмен белков. Полноценные и неполноценные белки. Азотистый коэффициент. Азотистое равновесие, положительный и отрицательный азотистый балансы. Регуляция белкового обмена.
4.
Обмен белков. Полноценные
и неполноценные белки.
Азотистый коэффициент.
Азотистое равновесие,
положительный и отрицательный
азотистый балансы.
Регуляция белкового
обмена.
Белки — сложные полимеры, состоящие
из мономеров, — аминокислот. Белки в отличие
от жиров и углеводов относятся к азотсодержащим
соединениям. В качестве мономеров из
большого числа существующих аминокислот
живые организмы используют только 20.
ФУНКЦИИ БЕЛКОВ
В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.
БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ
Для нормального метаболизма имеет значение не только количество получаемого человеком белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот.
АЗОТИСТЫЙ БАЛАНС
Скорость распада и обновления белков организма различна. Полупериод распада гормонов пептидной природы составляет минуты или часы, белков плазмы крови и печени —около 10 сут, белков мышц — около 180 сут. В среднем все белки организма человека обновляются за 80 сут. О суммарном количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В белке содержится около 16 % азота (т. е. в 100 г белка— 16 г азота). Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка. За сутки из организма взрослого человека выделяется около 3,7 г азота. Из этих данных следует, что масса белка, подвергшегося за сутки полному разрушению, составляет 3,7 х 6,25 = 23 г, или 0,028—0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания по Рубнеру).
Гормональная регуляция метаболизма белков обеспечивает обеспечивает динамическое равновесие их синтеза и распада.
Белки являются,
безусловно, одними из важнейших компонентов
в процессе жизнедеятельности организма.
А главное, они играют чрезвычайно важную
роль в питании человека, так как являются
главной составной частью клеток всех
органов и тканей организма.
3. Теплопродукция. Роль отдельных органов в теплопродукции. Сократительный и несократительный термогенез.
Суммарная
теплопродукция в организме складывается
из первичной теплоты, выделяющейся в
ходе постоянно протекающих во всех тканях
реакций обмена веществ, и вторичной теплоты,
образующейся при расходовании энергии
макроэргических соединений на выполнение
определенной работы.
Центры теплопродукции. Эфферентные нейроны центра теплопродукции тоже можно условно разделить на несколько типов, каждый из которых включает в действие соответствующий механизм теплопродукции.
а) Одни нейроны при своем возбуждении активируют симпатическую систему, в резуль-тате чего повышается интенсивность процессов, генерирующих энергию (липолиз, гликогенолиз, гликолиз, окислительное фосфорилирование). В частности, симпатические нервы за счет взаимодействия их медиатора (норадреналина) с бета-адренорецепторами активи-руют процессы гликогенолиза и гликолиза в печени, процессы липолиза в буром жире.
Одновременно, при
возбуждении симпатической
б) В гипоталамусе имеются эфферентные нейроны, которые влияют на гипофиз, а через него -- на щитовидную железу: возрастает продукция йодосодержащих гормонов (Т3 и Т4), которые, возможно, за счет разобщения процессов окислительного фосфорилирования по-вышают поток первичной теплоты, т. е. под их влиянием уменьшается аккумуляция энер-гии в АТФ, а большая часть энергии рассеивается в виде тепла.
в) В гипоталамическом
центре теплопродукции имеется также
популяция эфферентных
МЕХАНИЗМЫ ТЕПЛОПРОДУКЦИИ
Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиза АТФ. При гидролизе питательных веществ часть освобожденной энергии аккумулируется в АТФ, а часть рассеивается в виде теплоты (первичная теплота). При использовании энергии, аккумулированной в АГФ, часть энергии идет на выполнение полезной работы, часть рассеивается в виде тепла (вторичная теплота). Таким образом, два потока теплоты - первичной и вторичной - являются теплопродукцией. При высокой температуре среды или соприкосновении человека с горячим телом, часть тепла организм может получать извне (экзогенное тепло).
При необходимости повысить теплопродукцию (например, в условиях низкой темпера-туры среды), помимо возможности получения тепла извне, в организме существуют меха-низмы, повышающие продукцию тепла.
Классификация механизмов теплопродукции:
1.Сократительный термогенез -- продукция тепла в результате сокращения скелетных мышц:
а) произвольная активность локомоторного аппарата;
б) терморегуляционный тонус;
в) холодовая мышечная дрожь, или непроизвольная ритмическая активность скелет-ных мышц.
2.Несократительный термогенез, или недрожательный термогенез (продукция тепла в результате активации гликолиза, гликогенолиза и липолиза):
а)в скелетных мышцах (за счет разобщения окислительного фосфорилирования);
б) в печени;
в) в буром жире;
г) за счет специфико-динамического
действия пищи.
Сократительный термогенез
При сокращении мышц возрастает гидролиз АТФ, и поэтому возрастает поток вторичной теплоты, идущей на согревание тела. Произвольная мышечная активность, в основном, возникает под влиянием коры больших полушарий. Опыт человека показывает, что в условиях низкой температуры среды необходимо движение. Поэтому реализуются условнорефлекторные акты, возрастает произвольная двигательная активность. Чем она выше, тем выше теплопродукция. Возможно повышение ее в 3--5 раз по сравнению с величиной основного обмена. Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. Впервые его выявили в 1937 г. у животных, а в 1952 г. - у человека. С помощью метода электромиографии показано, что при повышении тонуса мышц, вызванного переохлаждением, повышается электрическая активность мышц. С точки зрения механики сокращения, герморегуляционный тонус представляет собой микровибрацию. В среднем, при его появлении, теплопродукция возрастает на 20-45% от исходного уровня. При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Терморегуляционный тонус экономнее, чем мышечная дрожь. Обычно в его создании участвуют мышцы головы и шеи.
Дрожь, или холодовая мышечная дрожь, представляет собой непроизвольную ритмиче-скую активность поверхностно расположенных мышц, в результате которой теплопродук-ция возрастает по сравнению с исходным уровнем в 2--3 раза. Обычно вначале возникает дрожь в мышцах головы и шеи, затем - туловища и, наконец, конечностей. Считается, что эффективность теплопродукции при дрожи в 2,5 раза выше, чем при произвольной деятельности.
Сигналы от нейронов гипоталамуса идут через «центральный дрожательный путь» (тектум и красное ядро) к альфа-мотонейронам спинного мозга, откуда сигналы идут к соответствующим мышцам, вызывая их активность. Курареподобные вещества (миорелаксанты) за счет блокады Н-холинорецепторов блокируют развитие терморегуляционного тонуса и холодовой дрожи. Это используется для создания искусственной гипотермии, а также учитывается при проведении оперативных вмешательств, при которых применяются миорелаксанты.
Несократительный термогенез
Он осуществляется
путем повышения процессов
В скелетных мышцах повышение несократителыюго термогенеза связано с уменьшением эффективности окислительного фосфорилирования за счет разобщения окисления и фо-сфорилирования, в печени -- в основном, путем активации гликогенолиза и последующего окисления глюкозы. Бурый жир повышает теплопродукцию за счет липолиза (под влияни-ем симпатических воздействий и адреналина). Бурый жир расположен в затылочной области, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя около 10% тепла образуется в буром жире. При охлаждении роль бурого жира резко повышается. При холодовой адаптации (у жителей арктических зон) возрастает масса бурого жира и ее вклад в общую теплопродукцию.
Регуляция процессов
несократительного термогенеза
осуществляется путем активации
симпатической системы и
6. Щитовидная железа, ее гормоны. Гипер- и гипофункция.
Щитовидная железа (glandula thyreoidea) состоит из двух долей, соединенных перешейком и расположенных на шее по обеим сторонам трахеи ниже щитовидного хряща. Она имеет дольчатое строение. Ткань железы состоит из фолликулов, заполненных коллоидом, в котором имеются йодсодержащие гормоны тироксин (тетрайодтиронин) и трийодтиронин в связанном состоянии с белком тиреоглобулином. В межфолликулярном пространстве расположены парафолликулярные клетки, которые вырабатывают гормон тиреокальцитонин. Содержание тироксина в крови больше, чем трийодтиронина. Однако активность трийодтиронина выше, чем тироксина. Эти гормоны образуются из аминокислоты тирозина путем ее йодирования. Инактивация происходит в печени посредством образования парных соединений с глюкуроновой кислотой.