Автор: Пользователь скрыл имя, 09 Октября 2011 в 13:24, реферат
На протяжении всей истории своего существования человек наблюдает вокруг себя постоянно изменяющийся, но по сути один и тот же окружающий мир. В своей повседневной деятельности к человеку не приходит даже мысли о том, что может существовать какой-то другой (не мистический, а вполне реальный) мир. Даже в начале двадцатого века, когда людям начинают приоткрываться тайны устройства микромира, никто не задумывался о такой возможности.
Введение 3
1.Теоретическое предсказание существования античастиц Полем Дираком 4
2.Экспериментальное подтверждение существования античастиц 6
3.Антивещество 8
4.Аннигиляция вещества и антивещества 10
5.Антивещество во Вселенной 12
6.БАК: за и против 18
Заключение 22
Список использованной литературы 24
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
КОСТРОМСКОЙ
ГОСУДАРСТВЕННЫЙ
Кафедра
философии
Реферат на тему:
АНТИЧАСТИЦЫ.
АНТИВЕЩЕСТВО
Выполнила: Малышева О.В.
Группа:
07-ГУ-8
Кострома
2008
СОДЕРЖАНИЕ
Введение
Заключение
Список
использованной литературы
ВВЕДЕНИЕ
На протяжении всей истории своего существования человек наблюдает вокруг себя постоянно изменяющийся, но по сути один и тот же окружающий мир. В своей повседневной деятельности к человеку не приходит даже мысли о том, что может существовать какой-то другой (не мистический, а вполне реальный) мир. Даже в начале двадцатого века, когда людям начинают приоткрываться тайны устройства микромира, никто не задумывался о такой возможности.
Однако
теоретическое обоснование и
опытное подтверждение
Сегодня
исследования в области античастиц
ведутся очень активно, они считаются
одним из наиболее перспективных
направлений современной
В 1920-е годы — после введения принципов квантовой механики — субатомный мир представлялся крайне простым. Всего два вида элементарных частиц — протоны и нейтроны — составляли ядро атома (хотя экспериментально существование нейтронов и было подтверждено лишь в 1930-е годы), и один вид частиц — электроны — существовали за пределами ядра, вращаясь вокруг него на орбитах. Казалось, всё многообразие Вселенной выстроено из этих трех частиц.
Увы, столь простой картине мира суждено было просуществовать недолго. Ученые, оборудовав высокогорные лаборатории по всему миру, принялись за изучение состава космических лучей, бомбардирующих нашу планету, и вскоре начали открывать всевозможные частицы, не имеющие ни малейшего отношения к вышеописанной идиллической триаде. В частности, были обнаружены совершенно немыслимые по своей природе античастицы.
Существование античастиц впервые предсказал Поль Дирак в статье, опубликованной им в 1930 году.
Еще
в университете Дирак заинтересовался
теорией относительности
Дирак
начал изучать уравнения
На Сольвеевском конгрессе в октябре 1927 года к Дираку подошел Нильс Бор. Вот как вспоминает об этом сам Дирак: «Бор подошел ко мне и спросил: «Над чем сейчас работаете?» Я ответил: «Пытаюсь получить релятивистскую теорию электрона». Бор тогда сказал: «Но ведь Клейн уже решил эту проблему». Я был несколько обескуражен. Я стал объяснять ему, что решение задачи Клейна, основанное на уравнении Клейна—Гордона, неудовлетворительно, так как его нельзя согласовать с моей общей физической интерпретацией квантовой механики. Однако я так и не смог объяснить что-либо Бору, так как наш разговор был прерван началом лекции и вопрос повис в воздухе».
Дирак был недоволен. Он стремился получить уравнения для одного электрона, а не для системы частиц с разными зарядами. Он добился своего, но решение его удивило. Двумерных частиц Паули, хорошо описывающих спин в нерелятивистском случае, явно не хватало. Электрон в теории имел лишнюю степень свободы — свободы, как оказалось, перехода в состояние с отрицательной энергией. Это выглядело настолько дико, что впору было отказаться от всего сделанного.
В
поисках выхода Дирак предложил
странную идею. Он предположил, что
все электроны Вселенной
Теория Дирака была встречена скептически. Вызвал недоверие гипотетический фон электронов, кроме того, теория Дирака, по его словам, «была очень симметрична по отношению к электронам и протонам».
Но
протон отличается от электрона не
только знаком заряда, но и массой. Открытие
позитрона, частицы действительно
симметричной электрону, заставило
по-новому оценить теорию Дирака, которая
по существу предсказывала существование
позитрона и других античастиц.
Пока
шло теоретизирование вокруг античастиц,
молодой физик-экспериментатор
При помощи этого аппарата, получившего название конденсационная камера, Андерсон смог зарегистрировать частицы, возникающие в результате столкновения космических лучей с мишенью. По интенсивности трека, оставленного частицей, он мог судить о ее массе, а по характеру отклонения ее траектории в магнитном поле — определить электрический заряд частицы. К 1932 году ему удалось зарегистрировать ряд столкновений, в результате которых образовывались частицы с массой, равной массе электрона, однако отклонялись они под воздействием магнитного поля в противоположную сторону по сравнению с электроном и, следовательно, имели положительный электрический заряд. Так была впервые экспериментально выявлена античастица — позитрон. В 1932 году Андерсон опубликовал полученные результаты, а в 1936 году был отмечен за них половиной Нобелевской премии по физике. (Вторую половину премии получил австрийский физик-экспериментатор Виктор Франц Гесс (Victor Franz Hess, 1883–1964), впервые экспериментально подтвердивший существование космических лучей). Это был первый (и, пока что, последний) случай присуждения Нобелевской премии ученому, официально даже не числившемуся на тот момент в штате научных сотрудников своего университета!
Хотя вышеописанный пример, казалось бы, служит идеальной иллюстрацией сценария «предсказание - проверка», историческая реальность представляется не столь простой, как кажется. Дело в том, что Андерсон, судя по всему, не знал о публикации Дирака абсолютно ничего до своего экспериментального открытия. Так что в данном случае речь идет, скорее, об одновременном теоретическом и экспериментальном открытии позитрона.
Все следующие за позитроном античастицы были экспериментально обнаружены уже в лабораторных условиях — на ускорителях. Сегодня физики-экспериментаторы имеют возможность буквально штамповать их в нужных количествах для текущих экспериментов, и чем-то из ряда вон выходящим античастицы давно не считаются.
Это вещество, состоящее из античастиц, т.е. атомов, ядра которых имеют отрицательный электрический заряд и окружены позитронами - электронами с положительным электрическим зарядом. В обычном веществе, из которого построен окружающий нас мир, положительно заряженные ядра окружены отрицательно заряженными электронами. Обычное вещество, чтобы отличать его от антивещества, иногда называют койновеществом (от греч. «койнос» — обычный). Однако в русской литературе этот термин практически не употребляется. Следует подчеркнуть, что термин «антивещество» не совсем правилен, поскольку антивещество — тоже вещество, его разновидность. Антивещество обладает такими же инерционными свойствами и создает такое же гравитационное притяжение, как и обычное вещество.
Говоря о веществе и
(Если
частица нейтральна, то античастица
также нейтральна, но они могут
различаться другими
Антипротон - античастица по отношению к протону. Масса и спин антипротона такие же, как у протона. Электрический заряд (и магнитный момент) антипротона отрицателен и равен по абсолютной величине электрическому заряду (магнитному моменту) протона.
Антипротон
был впервые обнаружен
Антинуклон - античастица по отношению к нуклону. Ядерное взаимодействие между антинуклонами может приводить к образованию ядер атомов антивещества, а между антинуклоном и нуклоном - к образованию бариония.
Антинейтрон - античастица но отношению к нейтрону. Антинейтрон электрически нейтрален, имеет спин 1/2 и массу, равную массе нейтрона. Магнитные моменты антинейтрона и нейтрона равны по абсолютной величине, но противоположны по направлению (по отношению к их спинам).