Автор: Пользователь скрыл имя, 07 Ноября 2011 в 18:12, реферат
Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.
В 1970-х годах эти задачи решались с использованием разнообразных методов, которые, если оценить их с современных позиций, были неадекватны по нескольким причинам. Чтобы описать динамику отдельного ряда, достаточно было просто использовать одномерные модели временных рядов, а чтобы описать совместную динамику двух рядов – спектральный анализ. Однако отсутствовал общепринятый язык, пригодный для систематического описания совместных динамических свойств нескольких временных рядов. Экономические прогнозы делались либо с использованием упрощенных моделей авторегрессии — скользящего среднего (ARMA), либо с использованием популярных в то время больших структурных эконометрических моделей. Структурный вывод основывался либо на малых моделях с одним уравнением, либо на больших моделях, идентификация в которых достигалась за счет плохо обоснованных исключающих ограничений, и которые обычно не включали ожидания. Анализ политики на основе структурных моделей зависел от этих идентифицирующих предположений.
Наконец, рост цен в 1970-е годы рассматривался многими как серьезная неудача больших моделей, которые в то время использовались для выработки политических рекомендаций. То есть это было подходящее время для появления новой макроэконометрической конструкции, которая могла бы решить эти многочисленные проблемы.
В 1980 году была создана такая конструкция – векторные авторегрессии (VAR). На первый взгляд, VAR – не более, чем обобщение одномерной авторегрессии на многомерный случай, и каждое уравнение в VAR – не более, чем обычная регрессия по методу наименьших квадратов одной переменной на запаздывающие значения себя и других переменных в VAR. Но этот вроде бы простой инструмент дал возможность систематически и внутренне согласованно уловить богатую динамику многомерных временных рядов, а статистический инструментарий, который сопутствует VAR, оказался удобным и, что очень важно, его было легко интерпретировать.
Выделяют три различных VAR-модели:
- приведенная форма VAR;
- рекурсивная VAR;
- структурная VAR.
Все три являются динамическими линейными моделями, которые связывают текущие и прошлые значения вектора Yt n-мерного временного ряда. Приведенная форма и рекурсивные VAR – это статистические модели, которые не используют никакие экономические соображения за исключением выбора переменных. Эти VAR используются для описания данных и прогноза. Структурная VAR включает ограничения, полученные из макроэкономической теории, и эта VAR используется для структурного вывода и анализа политики.
Приведенная
форма VAR выражает Yt в виде распределенного
лага прошлых значений плюс серийно некоррелированный
член ошибки, то есть обобщает одномерную
авторегрессию на случай векторов. Математически
приведенная форма модели VAR – это система
n уравнений, которые можно записать в
матричной форме следующим образом:
где a - это n´ l вектор констант;
A1, A2, ..., Ap – это n´ n матрицы коэффициентов;
et, - это n´l вектор серийно некоррелированных ошибок, о которых предполагается, что они имеют среднее ноль и матрицу ковариаций .
Ошибки et, в (17) – это неожиданная динамика в Yt, остающаяся после учета линейного распределенного лага прошлых значений.
Оценить параметры приведенной формы VAR легко. Каждое из уравнений содержит одни и те же регрессоры (Yt–1,...,Yt–p), и нет взаимных ограничений между уравнениями. Таким образом, эффективная оценка (метод максимального правдоподобия с полной информацией) упрощается до обычного МНК, примененного к каждому из уравнений. Матрицу ковариаций ошибок можно состоятельно оценить выборочной ковариационной матрицей полученных из МНК остатков.
Единственная тонкость – определить длину лага p, но это можно сделать, используя информационный критерий, такой как AIC или BIC.
На
уровне матричных уравнений
где b - вектор констант;
B0,..., Bp - матрицы;
ht — ошибки.
Наличие в уравнении матрицы B0 означает возможность одновременного взаимодействия между n переменными; то есть B0 позволяет сделать так, чтобы эти переменные, относящиеся к одному моменту времени, определялись совместно.
Рекурсивную VAR можно оценить двумя способами. Рекурсивная структура дает набор рекурсивных уравнений, которые можно оценить с помощью МНК. Эквивалентный способ оценивания заключается в том, что уравнения приведенной формы (17), рассматриваемые как система, умножаются слева на нижнюю треугольную матрицу.
Метод оценивания структурной VAR зависит от того, как именно идентифицирована B0. Подход с частичной информацией влечет использование методов оценивания для отдельного уравнения, таких как двухшаговый метод наименьших квадратов. Подход с полной информацией влечет использование методов оценивания для нескольких уравнений, таких как трехшаговый метод наименьших квадратов.
Необходимо
помнить о множественности
Поскольку
матрицы оцененных
Разложения
дисперсии ошибки прогноза вычисляются
в основном для рекурсивных или
структурных систем. Такое разложение
дисперсии показывает, насколько
ошибка в j-м уравнении важна для
объяснения неожиданных изменений i-й
переменной. Когда ошибки VAR некоррелированы
по уравнениям, дисперсию ошибки прогноза
на h периодов вперед можно записать как
сумму компонентов, являющихся результатом
каждой из этих ошибок.
В современной статистике под факторным анализом понимают совокупность методов, которые на основе реально существующих связей признаков (или объектов) позволяют выявлять латентные обобщающие характеристики организационной структуры и механизма развития изучаемых явлений и процессов.
Понятие
латентности в определении
Если
объекты характеризуются
Fr = c1n1 + c2n2 + ... + cNnN,
где
ci - вес объекта ni в факторе
Fr.
В
зависимости от того, какой из рассмотренных
выше тип корреляционной связи - элементарных
признаков или наблюдаемых
Название R-техники носит объемный анализ данных по m признакам, в результате него получают r линейных комбинаций (групп) признаков: Fr=f(Xj), (r=1..m). Анализ по данным о близости (связи) n наблюдаемых объектов называется Q-техникой и позволяет определять r линейных комбинаций (групп) объектов: F=f(ni), (i = l .. N).
В настоящее время на практике более 90% задач решается при помощи R-техники.
Набор методов факторного анализа в настоящее время достаточно велик, насчитывает десятки различных подходов и приемов обработки данных. Чтобы в исследованиях ориентироваться на правильный выбор методов, необходимо представлять их особенности. Разделим все методы факторного анализа на несколько классификационных групп:
-
Метод главных компонент.
- Методы факторного анализа. Дисперсия элементарных признаков здесь объясняется не в полном объеме, признается, что часть дисперсии остается нераспознанной как характерность. Факторы обычно выделяются последовательно: первый, объясняющий наибольшую долю вариации элементарных признаков, затем второй, объясняющий меньшую, вторую после первого латентного фактора часть дисперсии, третий и т.д. Процесс выделения факторов может быть прерван на любом шаге, если принято решение о достаточности доли объясненной дисперсии элементарных признаков или с учетом интерпретируемости латентных факторов.
Методы
факторного анализа целесообразно
разделить дополнительно на два
класса: упрощенные и современные
аппроксимирующие методы.
Простые методы факторного анализа в основном
связаны с начальными теоретическими
разработками. Они имеют ограниченные
возможности в выделении латентных факторов
и аппроксимации факторных решений. К
ним относятся:
-
однофакторная модель. Она позволяет
выделить только один
-
бифакторная модель. Допускает влияние
на вариацию элементарных
-
центроидный метод. В нем
Современные аппроксимирующие методы часто предполагают, что первое, приближенное решение уже найдено каким либо из способов, последующими шагами это решение оптимизируется. Методы отличаются сложностью вычислений. К этим методам относятся:
-
групповой метод. Решение
-
метод главных факторов. Наиболее
близок методу главных