Автор: Пользователь скрыл имя, 12 Февраля 2013 в 15:52, курсовая работа
Линейное программирование - это наука о методах исследования и
отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. Казалось бы, что для исследования линейной функции многих переменных на условный экстремум достаточно применить хорошо разработанные методы математического анализа, однако невозможность их использования можно довольно просто проиллюстрировать.
Введение
1 Математические основы решения задачи линейного программирования
1.1 Задачи линейного программирования и свойства ее решений
1.2 Форма задачи линейного программирования и свойства ее решений
1.3 Переход к канонической форме
1.4 Табличный симплекс-метод
1.5 Метод искусственного базиса
2 Разработка и описание алгоритма решения задачи
2.1 Содержательная постановка задачи
2.2 Математическая модель задачи
2.3 Решение задачи вручную
2.4 Решение задачи с помощью Excel
Заключение
Список литературы
Оптимальный план можно записать так:
x(2; 0; 0; 0; 8; 2)
Максимальное значение целевой функции F(X) = 4
2.4 Решение задачи с помощью Excel
1 шаг
Введем в табличный процессор Excel данные из условия задачи как показано на Рисунке 3.
Рисунок 3
2 шаг
Перейдем к ячейке F4 и введем целевую функцию как показано на Рисунке 4:
=B4*B2+C4*C2+D4
Рисунок 4
Шаг 3
Переходим в вкладку Сервис и находим функцию поиск решения (Рисунок 5):
Рисунок 5
Шаг 4
В диалоговом окне указываем следующие параметры:
Вид поиска: минимальное значение
В поле «изменяя ячейки»: $B$2:$C$2
В поле ограничения добавьте следующие ограничения (Рисунок 6) :
$B$2:$C$2>=0
$F$6>=$E$6
$F$7<=$E$7
$F$8<=$E$8
Рисунок 6
И нажимаем кнопку «Выполнить».
Шаг 5.
Получение ответа.
Целевая функция в ячейке F4 принимает значение 4. (Рисунок 7)
Рисунок 7
Заключение
В данной курсовой работе я рассмотрел и решил поставленные задачи:
Ответы ручного метода и табличного процессора Excel были идентичны.
Список литературы
Интернет-ресурсы:
1 URL: http://matesha.ru/book/lp5.
2 URL: http://uchimatchast.ru/teory/
3 URL: http://mathscinet.ru/books/
4 URL: http://uchimatchast.ru/teory/